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Non-Hermitian elastodynamics in gyro-odd
continuum media
Penglin Gao 1,2,3, Yegao Qu1,2✉ & Johan Christensen 3✉

Linear elasticity has long been considered a well-established research area using conservative

field theory. However, the discovery of odd-elasticity challenges the essential energy con-

servation assumption, which together with gyroscopic ingredients compromise the funda-

mental theory of elasticity, but to the same effect, enable new directions in active

elastodynamics. Here, we consider two-dimensional continuum mechanics in a more general

framework containing active constituents from both gyroscopic and odd-elastic effects, which

gives rise to non-reciprocal and non-Hermitian elastic waves in a highly unconventional guise.

We discuss how these unusual media can extract energy from odd-elastic engine cycles

comprising remarkable features of stability transitions, in which the energy exchange process

reverses. Beyond bulk waves, akin to the unidirectional characteristics of a 2D quantum-Hall

insulator, we demonstrate the existence of non-Hermitian Rayleigh surface waves which, in

contrast to the classical ones in passive solids, display one-way and interference-free

transport characteristics, which even remain resilient in finite sharp or curved geometries.

The findings reported here may provide new possibilities to manipulate elastic waves in

unusual ways.
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The theory of linear elasticity has long been considered a well-
understood area in classical continuum mechanics, however,
the booming field of artificial metamaterials offers plenty of

different avenues and perspectives to reexamine the basics1. The
directions cover a broad variety of topics ranging from Cosserat
elasticity2–4, Willis metamaterial5–7, pentamode metafluid8–10 to
topological mechanics11–14, just to name a few. Beyond passive
media, lately a growing frontier emerged relying on active systems
using external bias for various demands such as phononic gain,
reconfigurability, or deterministic functionality15,16. Moreover,
active metamaterials and artificial lattices have lately also found
important use in non-Hermitian, non-reciprocal and even topolo-
gical physics. Electrically biased piezophononic media17–20, spin-
ning gyroscope networks21, spatiotemporal metamaterials15,22 and
robotic toy models23,24, all are paradigm examples where active bias
provides a rich playground for highly unusual wave phenomena
and applications with the likes of unidirectional transmission, skin
effect, and delocalized topological states, etc. At a more fundamental
level, basic symmetry principles that were disregarded in the past,
have recently emerged as an intensively investigated branch of
active mechanics. One example is the breaking of the time-reversal
symmetry using lattices of spinning gyroscopes that is caused by
directional dependent inertial forces25–28. In addition, the Maxwell-
Betti reciprocity29, a fundamental relation connecting two sets of
stress and strain fields, broadly speaking, can be considered as the
symmetry between excitation and response. Recently, Scheibner
et al.30 discussed the failure of this basic symmetry and the odd
wave dynamics in over-damped systems when energy conservation
assumption was discarded, giving rise to a loss of major symmetry
of the elastic tensor, i.e., Cijkl ≠Cklij. Such novel odd-elastic material
acquires antisymmetric moduli Co

ijkl ¼ ðCijkl � CklijÞ=2 from
unconventionally introduced non-conservative internal forces
powered by internal activity. Thus, the breaking of the two sym-
metries has significantly broadened the foundation of possibilities in
classical elasticity27,31–33, yet it remains to be reported, beyond the
over-damped simplification, what implications gyro-odd coupling
has for wave propagation in general elastodynamic systems with
inertial terms.

In this work, we explore non-Hermitian wave dynamics in 2D
elastic media including active ingredients from both the gyro-
scopic and odd-elastic effects. The creation of active media
usually relies on microscopic lattices comprising power-driven

building blocks, which will be treated in the effective continuum
limit27,30 that permits us to acquire yet unseen elastodynamic
wave physics, such as non-Hermitian stability transitions due to
odd-elastic energy exchange in unbound media. For the semi-
infinite counterpart comprising both gyroscopic and odd-elastic
components, we unveil highly resistant non-topological Rayleigh
surface waves which, phenomenologically speaking, display fea-
tures reminiscent to chiral edge states in topological Chern
insulators. Hence, the non-Hermitian gyro-odd-elastic Rayleigh
waves confine along the interface in one direction and are capable
to propagate around sharp corners and bends with largely sup-
pressed parasitic scattering interference. Moreover, we display
how these designer Rayleigh waves can be engineered with arbi-
trary propagation and penetration lengths. Generally speaking,
we emphasize that gyro-odd coupling leads to highly unusual
elastodynamic features that are unattainable in purely gyroscopic
or over-damped odd-elastic systems.

Results and discussion
Continuum gyro-odd-elasticity. A gyro-odd-elastic lattice is
schematically illustrated in Fig. 1a, which displays a triangular
arrangement of lumped masses that are mounted on spinning
gyroscopes and connected to the six nearest neighbors through
active bonds. The former introduces gyroscopic coupling,
whereas the latter generates non-conservative interactions. The
active bonds, as shown in the inset of Fig. 1a, when perturbed
through elongation or contraction, produce not only axial
restoring forces Fr, but also transverse forces Fψ, which deviate
from the conservative force law of the standard Hookean
springs30. Under small perturbations, this network permits
movement only in the lattice plane O(x1, x2). Thus, in the strict
long wavelength regime, we can reasonably well treat the gyro-
odd-lattice as a 2D continuum metamaterial27,30,32. Specifically,
the inertial forces arising from the gyroscopic effect can be
effectively mapped into a density tensor21,27

ρ ¼ ρ iα

�iα ρ

� �
; ð1Þ

where ρ is the inertial density, and α reflects the level of gyricity.
We emphasize that the imaginary unit in the off-diagonal terms,
expresses the phase delay between the gyroscopic force and
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Fig. 1 Active lattice comprising gyroscopic and odd-elastic effects. a A lattice model illustrating how to introduce the two active ingredients: the lumped
masses are mounted on spinning gyroscopes to harness gyroscopic coupling. Active bonds that can generate non-conservative forces fuel the odd-elastic
response. b Phase diagrams for the two branches of waves in purely gyroscopic media (A= Ko= 0). The colored regions depict the phase velocities v1 and
v2. Several points are chosen to show the polarization trajectories, moving from blue to red. c Likewise in b, but now depicting the complex velocities for
purely odd elasticity when μ= 0.5 and α= 0. In this figure, the blank regions indicate either the absence of waves or mechanical instability. The velocities
v1/v2 are normalized with their counterparts in passive solids vL/vT, with the subscript denoting the longitudinal (L) or transverse (T) waves.

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00297-5

2 COMMUNICATIONS MATERIALS |            (2022) 3:74 | https://doi.org/10.1038/s43246-022-00297-5 | www.nature.com/commsmat

www.nature.com/commsmat


displacement, but has no additional influence on the energy
dissipation. The stress-strain relationship for the active bonds,
despite the non-conservative force law in the continuum limit, is
ordinarily expressed through the generalized Hooke’s law σij=
Cijklul,k, which for convenience is reformulated in matrix notation
as σα= Cαβsβ where α and β take integer values from 0 to 3 (see
Supplementary Note 1 for details). Here, σα and sβ are the
decomposed components of the stress tensor σij and the dis-
placement gradient tensor ul,k= ∂ul/∂xk, respectively. We focus
here on 2D isotropic solids whose less ordinary stiffness matrix
reads30

C ¼ 2

B 0 0 0

A 0 0 0

0 0 μ Ko

0 0 �Ko μ

0
BBB@

1
CCCA: ð2Þ

Beyond the familiar bulk B and shear modulus μ, the stiffness
matrix is now attributed by two odd-elastic moduli A and Ko.
Based on the continuum descriptions, the equation of motion is
given by

Cijklul;k
� �

;i
¼ ρji€ui; ð3Þ

which sustains time-harmonic solutions in unbound space, i.e.,
u ¼ eueiðk�x�ωtÞ. Here, eu denotes the complex amplitude of the
displacement, k and ω are, respectively, the wave vector and
angular frequency. The substitution of harmonic solutions into
Eq. (3) yields the dispersion relation of non-Hermitian elastic
waves (see Supplementary Note 2), detailed theoretical analyses
reveal that, when ∣α/ρ∣ < 1 there are two branches of non-
dispersive waves having phase velocities v1 and v2, which in the
passive limit correspond to the longitudinal (v1= vL) and trans-
verse waves (v2= vT), respectively. By contrast, when ∣α/ρ∣≥1 only
one pseudo-transverse branch remains, while the other one
related to v1 vanishes due to the strong gyroscopic effect.

To shed some light on the role of the two ingredients, we
consider two scenarios sustaining either gyroscopic (Fig. 1b) or
odd-elastic effects (Fig. 1c) separately. All the material properties
are dimensionless by setting ρ= 1 and B= 1. Figure 1b, c depict
v1 and v2 in the gyro-odd-parameters space, from which the
general wave dynamics can be unveiled. In Fig. 1b, what clearly
stands out is a transition boundary that divides the (μ, α) plane
into subcritical (α < 1) and supercritical (α > 1) regions. With
growing gyricity α, it is seen that v1 grows rapidly until the critical
point (α= 1) above which it ceases to exist. On the other hand,
with growing gyricity v2 gets smaller and displays no signs of a
transition. Since the gyroscopic forces tend to move segments of
the material in elliptical orbits, we observe that the two branches
exhibit hybridized polarization patterns as illustrated in Fig. 1b,
comprising either longitudinal- (for v1, circle) or transverse-
dominated (for v2, star and square in the (μ, α) plane) motions,
which will not happen in conventional isotropic solids. For odd-
elasticity, Fig. 1c displays completely different characteristics in
comparison to the gyroscopic media. First, complex velocities are
obtained since the odd-elastic effect drives the dispersion relation
to be fully complex. Mechanical stability requires Im ðv1;2Þ≤ 0
(color region), otherwise Im ðv1;2Þ>0 (blank region), correspond-
ing to amplified vibrational modes, which implies a collapse of
the solid structure owing to the growing energy injection in the
material bulk. Second, as shown by the polarization charts, the
eigenvectors experience an abnormal transition from linear to
elliptical polarization that is separated by the activity threshold
Ko(A+ Ko)= (B/2)2 (dashed lines). Interestingly, the eigenvec-
tors become co-linear at this transition boundary, which is a
hallmark feature of exceptional points and marks the onset of

non-Hermitian elastodynamics. In terms of energy exchange, this
non-Hermitian spectral singularity signifies the onset of nonzero
work generated by the non-conservative active force, which
happens when it starts to drive a material segment to form a
closed engine cycle. Below the activity threshold, the odd-elastic
moduli will not induce non-Hermitian features because the active
forces are not sufficiently strong to drive particles to form closed
engine cycles. Above it, however, the complex velocities indicate
either attenuated or unstable solutions due to the nonzero energy
extracted from the odd-elastic engine.

The complete elastodynamics comprising both odd-elasticity
and gyro-activity as expressed in equation (3) enriches the entire
wave scenario. While the threshold α= 1 of the gyricity level at
which one branch of the solutions ceases to exist prevails, the
combined gyro-odd stability transition borders at A+ 2Ko= 0 as
seen in Fig. 2 (see Supplementary Note 2). In this figure, Im ðv1;2Þ
is depicted for three typical gyroscopic cases: (a) α= 0.5; (b)
α= 1; and (c) α= 2. In comparison to Fig. 1c, here the velocities
acquire imaginary parts for any odd-elastic parameters (A, Ko)
except for A=− 2Ko (the dashed lines). We ascribe this to the
gyroscopic effect, because it drives a medium segment moving
along an elliptical trajectory, whose engine cycle persists for any
odd-elastic material properties, giving rise to gain or loss of elastic
energy through mechanical work:

W ¼ ðAþ 2KoÞSh; ð4Þ

where Sh is the area enclosed by a path in strain subspace
h= (s2, s3) (see Supplementary Note 4). In detail, the quantity W,
defined as the work done on the solid per unit area, measures the
energy injected in (W > 0, unstable) the material or flowing
outward (W < 0, stable) during one odd-elastic engine cycle.
Hence, the sign of W determines the stability of odd elasticity. At
the gyro-odd stability transition (A=− 2Ko), the mechanical
work cancels out, W= 0 [Eq. (4)], which is clearly seen in the
odd-elastic (A, Ko) phase-maps shown in Fig. 2. In addition, some
representative engine cycles are displayed to clarify the mechan-
ical work for some selected points. All four cases, according to
equation (4), produce negative work W < 0, which explains the
loss of elastic energy as indicated by the velocities of negative
imaginary parts Im ðv1; 2Þ< 0.

0

-0.8

0

-0.8

0

-0.8

0

-0.8

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

A A

o
K

o
K

Unstable

Unstable

UnstableUnstable

2s
3s

2s

3s

2s

3s
2s

3s

� �2Im Tv v

� �1Im Lv v

� �2Im Tv v

� �2Im Tv va b

c

Fig. 2 Gyro-odd elastodynamics in unbound media. a Phase diagrams
showing the stability transition in the odd-elastic parameters space. The
other material properties are chosen as μ= 0.5 and α= 0.5. The dashed
lines mark the transition boundary, that is A+ 2Ko= 0. The colored
(stable) regions depict the imaginary parts of v1,2. As indicated by the
symbols, some odd-elastic engine cycles are provided in the strain
subspace (s2, s3) to analyze the mechanical work done on the solid.
Likewise, (b, c) present the results for the cases α= 1 and α= 2,
respectively, but now only the v2 branch exists.
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Non-Hermitian Rayleigh waves. Conventional Rayleigh waves
are surface bound waves comprising elliptical segment motion.
Adding gyro-odd elasticity to a half-space as seen in Fig. 3 should
provide a non-Hermitian and non-reciprocal propagation chan-
nel with energy exchange between the artificial solid and its
surrounding. By formulating a directional Ansatz solution for
non-Hermitian Rayleigh waves, we obtain complex forward
(backward) Rayleigh velocities vþR (v�R ) as depicted by the scatter
plots shown in Fig. 3a (Fig. 3b) (see Supplementary Notes 3 and 5
for details). In the scatter diagrams, the gray dots indicate the
absence of surface waves, while the red dots and the hollow circles
mark stable and unstable solutions, respectively. We note that
surface waves appear only if the odd-elastic moduli are all non-
negative (highlighted quadrants in Fig. 3a, b). In this zone, a
unidirectional transition threshold features the odd-parameter
space, which indicates that fully rectified Rayleigh surface waves
can flip their one-way path beyond this border. We place a point
source at the half-space interface to probe various phases in the
odd-parameter space. At its origin, i.e., the circle in Fig. 3a, b,
gyroscopic coupling only prevails by virtue of weak asymmetric
Rayleigh wave spreading, however, at the cost of visible vibra-
tional bulk penetration as shown in Fig. 3c. In stark contrast,
once odd-elasticity is included (star and square in Fig. 3a, b) the

non-Hermitian Rayleigh waves display a highly non-reciprocal
response to the excitation source, where in fact, both the one-
sided propagation length δ∥ and the penetration depth δ⊥ can be
designed at will as shown in Fig. 3d, e. To elaborate on this, we
compute those two quantities, which are defined as length scales
at which the displacement amplitude decays to 1/e along their
respective directions. The map of δ⊥ (Fig. 3f), similar to passive
media, shows a strong confinement of Rayleigh waves at the order
of one wavelength. Regarding the propagation length as shown in
Fig. 3g, we predict a tunable response in dependence of the odd-
elastic moduli, ranging from nearly infinite to merely several
wavelengths. Thus, the entire odd-elastic parameter space, ele-
gantly displays how surface vibrations can be tailored for long- or
short-range propagation. Upon closer inspection of the
mechanical work done by the non-Hermitian Rayleigh waves:
W ¼ R 0

�1½�ASgðx2Þ þ 2KoShðx2Þ�dx2, where Sg and Sh are the
enclosed areas in the strain subspaces g= (s0, s1) and h= (s2, s3),
respectively (see Supplementary Note 4), we display the shallow
depth engine cycles of the two one-way surface waves as shown in
Fig. 3h, i. Both scenarios produce negative net work, however, the
reversion of the cycle as seen in Fig. 3i compensates loss of elastic
energy, which consequently enables extended propagation lengths
as shown in Fig. 3e.
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Non-topological elastic resilience. While non-Hermiticity and
non-reciprocity jointly have displayed unusual non-Bloch bulk-
boundary properties in terms of topological skin effects19,34, we
show in the following that the energy exchange assisted by gyro-
odd-elasticity as well leads to wave characteristics that are
impossible to be captured by Bloch’s theorem. We take a suffi-
ciently sized gyro-odd slab (see the inset of Fig. 4a) and apply
periodic boundary conditions to mimic a half-space. The complex
eigenfrequencies of non-Hermitian Rayleigh waves are plotted in
comparison to the theoretical predictions of such half-space as
shown in Fig. 4a. Based on the non-reciprocity and energy-
exchange induced wave attenuation, we predict that the Bloch-
wave based solution diverges from the analytical prediction. The
result thereof is clearly seen in Fig. 3e, where the gyro-odd
Rayleigh waves exhibit rather distinctive features in comparison
to the periodic Bloch wavefield (inset of Fig. 4a), suggesting that
one-way lossy properties have no periodic solutions. However,
the fact that those complex waves only vibrate in one direction,
raises the question as to whether features of a Chern
insulator25,26,35 can be found in gyro-odd continuum media in
the absence of a band topology. Thus, we excite non-Hermitian
Rayleigh waves in geometrical shapes of letters to argue whether
parasitic scattering is formed. Despite the lossy channels as cap-
tured by the complex eigenvalues in Fig. 4b which provides finite
propagation, we clearly see in Fig. 4c that the gyro-odd Rayleigh
waves efficiently bend the curves and go beyond sharp obstacles
despite their non-topological origin. The unidirectional features
disable back-scattering; however, weak surface-bulk interference
prevails at the most obstructed paths. A gyro-odd-elastic wedge of
different vertex angles and curvature radii has been discussed
elsewhere (see Supplementary Note 5) to shed more light on the
influence of the geometry.

Conclusions
In conclusion, we have investigated the elastodynamics in active
media comprising both gyroscopic and odd-elastic effects. It is
shown that such materials present highly unusual non-Hermitian

characteristics in that active systems may be driven to be stable or
unstable due to the exchange of energy. More importantly, we
showcase non-Hermitian Rayleigh waves that by the right choice
of odd-elastic moduli travel along a strict unidirectional path,
where the travel distance and degree of confinement, likewise can
be tuned. Thanks to the resulting absence of reciprocity, such
one-way gyro-odd-elastic waves, surprisingly display very strong
robustness against uneven surfaces and sharp corners. Beyond the
academic significance, we foresee that the unusual physics
reported here can stimulate explorations in active devices, aiming
at robust and scattering-immune guiding of surface acoustic
waves. Fortunately, recent approaches have demonstrated viable
routes towards gyroscopic and odd-elastic responses using
robotics and piezoelectric metamaterials27,28,36–38, which may
pave the way for a gyro-odd elastodynamics implementation.

Methods
Based on an algorithm (see Supplementary Notes 2, 3), we have solved the modal
solutions of Eq. (3) for both unbound and semi-infinite spaces as illustrated in
Figs. 1–3. In addition, finite-element-based computations were implemented to
simulate elastic waves propagating in active media using the PDE module of the
commercial solver package COMSOL Multiphysics. When considering the eigen-
frequency analysis of the slab in Fig. 4a, the vertical sides are subject to periodic
boundary condition while the horizontal surfaces are set to be stress-free. In
Fig. 4b, c, all boundaries are assumed to be stress-free.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The code for obtaining the results of this work are available from the corresponding
author upon reasonable request.
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"UC3M" as depicted below. c Simulated displacement fields when the
letters are excited by local vibrations (red stars, ω= 15π). In the calculation,
the parameters are specified as α= 1, μ= 0.5, A= 0, and Ko= 0.5, and the
wavefields are normalized with regard to their own maximum values.
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