
Mechanical Systems and Signal Processing 162 (2022) 108047

Available online 29 May 2021
0888-3270/© 2021 Elsevier Ltd. All rights reserved.

Topological cavities in phononic plates for robust 
energy harvesting 

Zhihui Wen a, Yabin Jin a,*, Penglin Gao b,*, Xiaoying Zhuang c,d, Timon Rabczuk e, 
Bahram Djafari-Rouhani f 

a School of Aerospace Engineering and Applied Mechanics, Tongji University, 200092 Shanghai, China 
b Department of Physics, Universidad Carlos III de Madrid, ES-28916 Leganes, Madrid, Spain 
c Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 200092 Shanghai, China 
d Institute of Photonics, Department of Mathematics and Physics, Leibniz University Hannover, Germany 
e Institute of Structural Mechanics, Bauhaus-Universität Weimar, Weimar D-99423, Germany 
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A B S T R A C T   

Piezoelectric energy harvesting has attracted tremendous interest for designing sustainable self- 
powered devices/systems targeted to special environment such as wireless or wearable applica-
tions. The traditional cavity (e.g., phononic cavity mode) excitation is highly applicable in terms 
of sufficient power generation, nevertheless, has to endure the drawback of extremely poor 
robustness intrinsic to the trivial cavity modes. We propose to use phononic thin plate systems for 
robust energy harvesting application relying on zero-dimensional cavities confined by the Kekulé 
distorted topological vortices. The harvesting power induced by topological cavities is about 30 
times that of the bare plate. Further studies on the effects of deliberately introduced defects on the 
output power show that the proposed energy harvesting system is highly robust against 
symmetry-preserving defects, and is less influenced even for symmetry-breaking defects at 
moderate perturbation level. Beyond the reported energy harvesting application, we foresee that 
our work may open avenues for robust operations in the realm of wireless sensing and structural 
health monitoring.   

1. Introduction 

The phononic crystals and mechanical metamaterials are artificial structures having both periodic and aperiodic configurations 
[1–4], which can prevent acoustic or elastic wave propagation by creating bandgaps. This property plays a key role in the manipulation 
of acoustic or elastic waves, such as confinement effect [5,6] and waveguiding [7,8]. In phononic thin plates, the flexural wave modes 
in the bandgap can be captured with defects in phononic crystals and metamaterials [9–11]. The localized mode caused by the removal 
of scatters/resonators is termed as cavity mode, which has been widely used for energy harvesting [9,12–17]. The energy harvesting 
usually relies on coupling the out-of-plane bending strain and the piezoelectric effect of piezoelectric patch fixed at the defect position 
[12,18]. Energy harvesting is achievable for both sonic [13,15] and mechanical vibrations [12]. Acoustic/elastic energy harvesting has 
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been reported by employing point defect of resonant cavity [13,19], piezoelectric beam [14,20–22], planar acoustic metamaterial [15] 
and so forth. Besides, deep sub-wavelength elastic wave [9,23] and wide working bandgap by double defect mode [24] have been 
investigated for energy harvesting. The factors that affect energy harvesting are important. Therefore, the supercell size and defect 
location of defect mode [25] have been studied in depth for energy localization and harvesting. Recently, graded elastic metasurface 

Nomenclature 

R Unperturbed distance of adjacent resonators 
a0 Primitive lattice period 
k0 Kekulé wave vector 
ϕ Kekulé phase 
Ai Distortion amplitude 
ξi Vortex radius 
n Vorticity 
a Lattice constant 
E Young’s modulus of thin plate 
ρ Density of thin plate 
ν Poisson’s ratio of thin plate 
En Young’s modulus of neck 
ρn Density of neck 
νn Poisson’s ratio of neck 
Eh Young’s modulus of resonator head 
ρh Density of resonator head 
νh Poisson’s ratio of resonator head 
h Plate thickness 
hn Height of neck 
dn Diameter of neck 
hh Height of resonator head 
dh Diameter of resonator head 
D Plate stiffness 
ω Angular frequency 
mR Mass of resonator head 
kn Effective stiffness of resonator neck 
K Bloch wave vector 
G Reciprocal lattice vector 
gi Basis vector of reciprocal space 
ai Basis vector of primitive space 
δij Kronecker symbol 
S Area of unit cell 
w Out-of-plane displacement of thin plate 
w1 Out-of-plane displacement of resonator 
Ω Normalized frequency 
γα Normalized mass 
ti Stiffness coefficient 
f Excitation frequency 
G0 Green function 
Λ Scattering coefficients of resonator 
Rd Radius of distortion structure 
L Side length of PZT 
Sij Strain of PZT 
V Electrical voltage 
Ez The z-component of electric field 
ε0 Vacuum permittivity 
e3i Piezoelectric ceramic constant 
t Thickness of PZT layer 
R0 Resistance of AC electrical circuit 
I Current amplitude 
P Average harvesting power 
AC Alternating current  
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[16] and octagonal phononic crystals [12] were employed to further enhance the energy harvesting of elastic waves in thin plates. 
In the past decades, the utilization of cavity modes for energy harvesting was the mainstream and allowed tremendous achieve-

ments in this field. However, the robustness of the cavity mode against unintentionally introduced perturbations, such as the variation 
of geometric parameters and material properties introduced during the additive manufacturing process [26], is relatively weak. On the 
other hand, cavity mode is destined to be casual and unpredictable in the sense that whose frequency is quite sensitive to relatively 
small parameter variations. The rise of topological phases [27–30] for classical waves opens new routes to reexamine the afore-
mentioned challenging problems. Along with the development of topological phases in condensed matter physics, we have recently 
witnessed a booming frontier for classical systems, such as acoustic topological insulator [31–34], topological bound states of elastic 
waves [35], topological pumping [36] and higher-order topological insulators [37]. On the other hand, the corner modes depended on 
the higher-order topological insulators have been widely concerned in 2D and 3D systems recently [38–40]. The responses of the 
metamaterials are firmly fixed at the corners of them. The aforementioned topological phases provided a rich and diverse choice for 
acoustic, vibrational and optical implementations. 

Apart from the uniform higher-order topological insulators, as initially suggested by Jackiw and Rossi [41], aperiodic topological 
vortex hosts lower-dimensional bound states as well, which has been experimentally verified very recently in classical systems for 
sound, vibration and light [42–44]. The key point lies in the complex intervalley coupling that is readily accessible thanks to the Kekulé 
modulation mechanism which, in a nutshell, relies on hybridizing valley modes via the band-folding mechanism [45,46]. The latest 
topological bound states of acoustics [42,47], mechanics [43] and optics [44,48] are also based on the binding mechanism, and lead to 
the exact bound confinement of acoustic / elastic / optical waves at the vortex core. The bound states can be excited exactly at Dirac 
frequency when a point source is placed near the vortex center. The abundant designable parameters, the strong robustness and the 
wide range of operating conditions of the binding mechanism open a new way for energy harvesting applications. Along the frontier of 
topological physics, Chaplain et al. [49] recently proposed a 1D graded SSH model and utilized its interface state for energy harvesting. 
Here, we utilize the Jackiw-Rossi binding mechanism to trap and harvest elastic energy from 2D plate, which is fundamentally 
different from the 1D implementation. 

We deepen the reach of topological bound states for energy harvesting via the Kekulé modulation. In Sec. 2, we design the to-
pological vortex mechanical thin plates with the exact zero bandgap at the vortex core based on honeycomb lattice. And then in Sec. 3, 
we develop the numerical tools for analyzing, including the dispersion theory, multiple scattering theory and piezoelectric effect 
theory. Sec. 4 is committed to the realization of the topological peak of the piezoelectric output power, which is our primary pursuit. In 
Sec. 5, we systematically study the robustness of power peaks of mechanical thin plates against the minor disturbances including both 
the symmetry-preserving and symmetry-breaking defects. And last Sec. 6 gives the conclusion. 

2. Modeling of topological vortex in phononic thin plates 

As illustrated in Fig. 1, we start with a honeycomb lattice consisting of spring-mass resonators (blue dots) that are attached to a thin 
plate to build a mechanical plate system. Thanks to the spatial inversion symmetry, such lattices naturally sustain Dirac dispersion at 

Fig. 1. Mechanical analogue of Jackiw-Rossi vortex whose Kekulé phase has a winding number n = 1 [42,47]. Resonators are arranged in hon-
eycomb lattice to introduce intervalley coupling. The blue solid dots and white hollow circles denote, respectively, the lattice sites (resonators) in 
the primitive and disturbed lattices. The background color map illustrates the bandgap width distribution induced by the position-dependent 
Kekulé modulation. 
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the Brillouin corners, i.e., K and K’ points, which facilitates the exploration of graphene-like physics for flexural vibrations [50]. The 
two valleys degree of freedom are mutually independent and cannot be coupled together in the pristine honeycomb lattices. Fortu-
nately, the Kekulé distortion which relies on expanding supercells opens an avenue to acquire complex intervalley coupling that is at 
the core of topological vortex realization. The physics is because the expanded supercell folds the two valleys to appear simultaneously 
at the Brillouin zone center hence giving rise to valley modes hybridization [45]. As proposed by Jackiw and Rossi [41] topological 
bound states are expected to appear at a vortex center if the complex intervalley coupling is modulated to be position-dependent 
together with the phase winding process. This speculation has recently been experimentally demonstrated in both sonic [42] and 
mechanical systems [43] by employing generalized Kekulé modulation to introduce the required phase controlled intervalley 
coupling. Here we follow the implementation of Chen et al. [43] to explore the appealing applications of such topological bound state 
for robust energy harvesting. We now use expanded supercells whose six resonators (blue solid dots) are displaced to form Kekulé 
texture of different phases (white hollow circles), as highlighted by the hexagons around the perimeter in Fig. 1. Around the center the 
Kekulé phase winding eventually leads to a topological vortex composing aperiodic lattice sites 

R(riα) = riα − Δ(riα){sin[k0 ⋅ riα + ϕ(riα) ], φ(α)cos[k0 ⋅ riα + ϕ(riα) ] }, (1)  

where riα = [xiα, yiα] is the position vector of the primitive lattice sites with subscripts i and α denoting the unit cell and sublattice 
indices, respectively. We emphasize that the y-component distortion is differentiated with φ(α) = ±1 for the two sublattices. In Eq. (1), 
we have introduced two position-dependent terms to ensure smooth lattice variation around the vortex center. One is the position 
distortion Δ(riα) = A0tanh(|riα|/ξ0 ) which controls the gap opening process along the radial direction by tuning both its amplitude A0 
and vortex radius ξ0. Another ingredient is the Kekulé phase ϕ(riα) = nθ whose angular winding embodies an adiabatic pumping 
process responsible for the emergence of topological bound states [47]. In this study, the involved parameters are specified as: the 

Fig. 2. (a) Band diagrams of flexural waves propagating in the unperturbed honeycomb lattice (see the inset for its supercell). (b) Bandgap variation 
of a uniform Kekulé lattice when its phase is increased from 0 to 2π at constant distortion amplitude A0=0.12a0. Band diagrams calculated with the 
self-developed PWE algorithm and the finite element simulations for two typical scenarios: (c) ϕ = 0; (d) ϕ = π. The Brillouin zone and high 
symmetry points are illustrated in the inset of panel (c). 
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distance between two nearest resonators R = 16 mm, primitive lattice period a0 =
̅̅̅
3

√
R, winding number n = 1, Kekulé wave vector 

k0 = [4π/3a0, 0], distortion amplitude A0 = 0.12a0 and vortex radius ξ0 = 0.1a0. 
For clarity, we have a closer look at the expanded supercell with constant Δ and ϕ, serving as building blocks of the Kekulé distorted 

vortex, to reveal the gap-opening process. In Fig. 1, the background color illustrates the gap width distribution (subwavelength Bragg 
band gaps [51,52]) along with the modulation of Δ(riα) and ϕ(riα). What clearly stands out is the gapless core (Δ = 0) from which the 
gap width increases with radial coordinate until reaching a saturation value, while it shows periodic features during the angular 
variation. Such bandgap pattern will allow the construction of a robust bound state at the vortex core [42,43], which is very useful for 
designing topologically mechanical devices for sensing and energy harvesting. 

3. Methodology 

To derive the theory of the mechanical metamaterial for energy harvesting, we briefly introduce the classical Kirchhoff-Love thin 
plate theory of flexural waves and describe the methodology. We emphasize that the numerical tools developed here are not suitable 
for thick plate problems that have to employ the Mindlin-Reissner theory [53,54]. The resonators in honeycomb lattice are connected 
to the thin aluminum plate through necks [see the inset in Fig. 2(a)]. Throughout this work, if not specified, the thickness of the 
aluminum plate h is 1 mm, whose elastic parameters are Young’s modulus E = 73 GPa, Poisson’s ratio ν = 0.352 and density ρ =

2730 kg ⋅ m− 3. The resonator’s cylinder neck is made of resin with height hn = 5 mm and diameter dn = 2 mm, whose elastic 
parameters are Young’s modulus En = 2.65 GPa, Poisson’s ratio νn = 0.41 and density ρn = 1095.24 kg ⋅ m− 3. The resonator 
head is made of lead (Young’s modulus Eh = 16 GPa, Poisson’s ratio νh = 0.42 and density ρh = 11370 kg ⋅ m− 3) with height hh =

12.66 mm and diameter dh = 8 mm. The material properties mentioned above are based on standard commercial materials that are 
isotropic and with extremely small to negligible viscoelastic damping. The designed effects shown in this work are mainly related to the 
geometrical parameters rather than to the material properties. Therefore, other solid materials can also be applicable. 

3.1. Dispersions 

Plane wave expansion method (PWE) has becoming a widely used tool for band diagram computation [55,56]. If properly 
extended, such method is useful for analyzing even evanescent Bloch waves [53,57,58]. With this method, here we first evaluate the 
dispersion curves of uniform Kekulé lattices. The unperturbed lattice sites are Riα = Ri + Rα, where i runs for all the lattice vectors and 
α runs for all the six resonators within the supercell. It should be noted that the honeycomb lattice represents a supercell with respect to 
the primitive cell with two resonators as mentioned in Sec. 2. The transition folds the dispersion curves inside the bigger Brillouin zone 
of the primitive cell into the smaller Brillouin zone of the supercell [59]. In the PWE theory, we consider the honeycomb lattice with a 
lattice constant a = 3R to create a double Dirac cone at the Γ point of the Brillouin zone for further construction of topological bound 
states. The equation of motion for flexural waves in the mechanical metamaterial thin plate can be written as [60,61] 

(D∇4 − ω2ρh)w(r) =
∑

Ri ,α
ω2mRw1(Riα)δ(r − Riα), (2)  

where D is the plate stiffness, ∇4 is the biharmonic operator, w(r) is the out-of-plane displacement and ω is the angular frequency. The 
summation runs over all resonator sites within the expanded supercell. Resonator head is boiled down to lumped masses 
mR = πd2

hhh/4, and the resonator neck is simplified as a linear elastic spring with a stiffness kn = πEnd2
n/4hn [51]. According to 

Newton’s second law and the coordination equation of the system, the governing equation of each resonator is 

ω2mRw1(Riα) = − kn(w(Riα) − w1(Riα)). (3) 

By the derivation of Floquet-Bloch waves in periodic systems (see Appendix A), the above equations are rewritten in matrix form 
([

P11 P12
P21 P22

]

− Ω2
[

Q11 0
0 Q22

])

×

(
w(G)

w1(0α)

)

= 0, (4)  

with notations 

P11(ij) =
(
(kx + Gxi)

2
+
(
ky + Gyi

)2
)2

a4δij +
∑

α
γαΩ2

αe− j(Gi − Gj)⋅Rα，P12(iα) = − γαΩ2
αe− jGi ⋅Rα 

P21(βj) = − γαΩ2
αe− jGj ⋅Rβ , P22(αβ) = γαΩ2

αδαβ, Q11(ij) = δij, Q22(αβ) = γαΩ2
αδαβ, the Bloch wave vector K = [kx, ky] and the reciprocal 

lattice vector G = [Gx,Gy]. Here, i and j run for the reciprocal vectors and α, β run for resonators in the supercell. Ω2 is the normalized 
frequency, γα is the normalized mass of the metamaterial thin plate, Ω2

α is the normalized resonance frequency of each resonator (see 
appendix A). 

Then, the band diagram calculation for flexural waves is reduced to a generalized eigenvalue problem by sweeping Bloch wave 
vector in the irreducible Brillouin zone for the frequency f defined as 

f =
Ω

2πa

̅̅̅̅̅
ρh
D

√

. (5) 
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Fig. 2(a) shows the band diagram of flexural waves for the pristine honeycomb lattice whose double Dirac cones appear at the Dirac 
frequency fD = 1294 Hz at the center of the Brillouin zone. The resonant frequency of all resonators is set as fr = 2414.7 Hz in the 
computation. The readers of interest are referred to Refs. [51,60] for more information, such as the pseudo-spin wave modes and the 
relationship between the Dirac frequency and the resonant frequency of the resonators. The double Dirac cones are coming from the 
zone-folding effect which folds the pair of Dirac cones of the honeycomb lattice to the center of the Brillouin zone. To understand the 
gap-opening effect of the Kekulé distortion and obtain the common bandgap of the mechanical analogue of Jackiw-Rossi vortex as 
mentioned in Fig. 1, we evaluate bandgap opening when Kekulé phase varies from 0 to 2π at constant distortion amplitude Δ = 0.12a0 

and exhibit the bandgap variation in Fig. 2(b). When the positions of resonators are distorted, the inversion symmetry of the supercell 
is broken resulting in the opening of a gap at the double Dirac cone frequency [59]. The blue lines bound the bandgap edges during the 
phase variation, while the bulk bands at the top and bottom of the band gap are left in blank. From Fig. 2(b), we observe the bandgap 
has a period of 2π/3, and the dark blue region constitutes the common bandgap of the Kekulé vortex in the frequency range [1215, 
1495] Hz. Figures 2(c) and 2(d) display the band structures by PWE and FEM verification when ϕ = 0 and ϕ = π, respectively. In the 
FEM verification, we use geometrical parameters and material properties as mentioned at the beginning of Sec. 3. On the other hand, 
our PWE approach is solely based on flexural waves at low frequencies. The band structures computed from the FEM and PWE methods 
agree quite well with each other proving the accuracy of the employed methods. Therefore, the full FEM simulation provides a clear 
support to the validity of the approximate approach based on flexural wave assumption and spring-mass modeling. It should be 
mentioned that the additional bands emerging in FEM results correspond to shear-horizontal and symmetric Lamb modes, while those 
modes appearing as flat bands have a local resonance origin [29,51,62]. 

Fig. 3. (a) The out-of-plane displacement measured at the cluster center for both trivial (n = 0) and nontrivial (n = 1) configurations from the MST 
and FEM simulations. The shaded background indicates the vortex (n = 1) bandgap coming from our PWE prediction. The vibration patterns 
obtained from (b) MST and (c) FEM simulations when the vortex (n = 1) is excited by a point source (red dot) of Dirac frequency. The dashed square 
in panel (c) illustrates the attached piezoelectric sheet for energy harvesting. 
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3.2. Multiple scattering theory 

For the mechanical metamaterial with a finite distortion of the honeycomb lattice as per Eq. (1), we use the multiple scattering 
theory (MST) [60,61,63,64] to calculate flexural wave propagation and further to compute the average harvesting power by a 
piezoelectric patch. The total incoming wave of each resonator is determined by the scattering field of other resonators and the 
external point source excitation as (see Appendix B) 

ψ(ri) = ψ0
( ⃒
⃒ri − Reps

⃒
⃒
)
+
∑

num∕=i

TnumΛe(Rnum) G0(|ri − Rnum| ) (6)  

where Tnum is the coefficients of the system, Rnum = R(Riα) runs for all lattice sites, G0 is the Green function (see Appendix B). 
Then, the multiple scattering field of the metamaterial thin plates can be written in matrix form as 

[P]num×num

⎡

⎢
⎢
⎣

Λe(R1)

Λe(R2)

⋮
Λe(Rnum)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

G0(
⃒
⃒R1 − Reps

⃒
⃒
)

G0(
⃒
⃒R2 − Reps

⃒
⃒
)

⋮
G0(
⃒
⃒Rnum − Reps

⃒
⃒
)

⎤

⎥
⎥
⎦ (7)  

where 

[P] =

⎡

⎢
⎢
⎣

1 − T2G0(|R1 − R2|) ⋯ − TnumG0(|R1 − Rnum|)

− T1G0(|R2 − R1|) 1 ⋯ − TnumG0(|R2 − Rnum|)

⋮ ⋮ ⋱ ⋮
− T1G0(|Rnum − R1|) − T2G0(|Rnum − R2|) ⋯ 1

⎤

⎥
⎥
⎦ (8) 

Eq. (7) is at the heart of the multiple scattering algorithm. On its right side, G0(
⃒
⃒Rnum − Reps

⃒
⃒
)

characterizes the coupling of each 
resonator and the point source, where the point source locates at Reps. The dimension of the matrix P is num. Take a row of the matrix 
for example, the diagonal coefficient of the square array is 1, corresponding to each resonator. And the others are the coupling effect 
among different resonators. In short, the scattering field of each resonator is determined by the point source and the field emitted by all 
the remaining resonators. 

In simulations we place a point source at Reps = [0, − (1 +
̅̅̅
3

√
)R] as marked by the red dot in Fig. 3(c), and the topological meta-

material plate consists of a circular cluster of resonators with |Rnum|⩽Rd (Rd is the radius of the cluster). The out-of-plane displacement 
(DIS) response spectra at the vortex center are calculated with the aforementioned MST algorithm for vortices n = 1 and n = 0, 
respectively as shown in Fig. 3 (a). The sharp peak appearing exactly at the Dirac frequency is the fingerprint of the topological bound 
state. Here, we expect to achieve high-efficient energy harvesting with strong robustness by such a design. Near the upper edge of the 
common bandgap (highlighted with shaded color) in Fig. 3(a), two additional topologically trivial peaks emerge which can also be 
good candidates for energy harvesting, though less robust, if one desires their broadband features. For the trivial configuration n = 0, 
the Kekulé distortion leads to shrunken or expanded supercells only, but cannot form a vortex of phase winding, failing to support the 
topological states at Dirac frequency. 

To verify the accuracy of our MST algorithm, we establish a full-scale FEM model to simulate the out-of-plane response spectrum in 
the finite structure where the boundaries are surrounded by a ring-shaped perfectly matched layer (PML) to avoid unwanted re-
flections (see Appendix C). As shown in Fig. 3(a), the out-of-plane displacement (DIS) response spectra of the MST and the corre-
sponding FEM verification are highly consistent near the Dirac frequency fD = 1294 Hz, with nearly negligible difference for 
the two peaks. The out-of-plane displacement fields at the peak’s frequency in Fig. 3(b) and (c) are calculated by the FEM and the MST 
approaches, respectively, showing exactly the same vibration patterns of the topological bound states. 

3.3. Piezoelectric response for energy harvesting 

We attach a square piezoelectric ceramic transducer (PZT-5H) patch with a side length L = 42 mm and thickness t = 0.1 mm to the 
opposite surface of the plate whose position is marked as the dashed yellow square and build the piezoelectric model together with the 
MST method [see Fig. 3(c)]. Compared with the thin aluminum plate, the piezoelectric patch is thin enough, and its binding contri-
bution to the vibration of the thin plate is relatively weak, so that only slightly affects the vibration amplitude of the thin plate. 
Therefore, the coupling effect of them on the bound state is ignored. Here, the anisotropic piezoelectric ceramic is also considered as a 
homogeneous thin plate, whose elastic strain is defined as 

Sxx = − z
∂2w
∂x2 ; Syy = − z

∂2w
∂y2 ; Sxy = − z

∂2w
∂x∂y

, (9)  

where w is the out-of-plane displacement of the thin plate that can be numerically solved by the multiple scattering algorithm. 
The electrical displacement along the x and y direction is zero based on the basic assumption of the elastic thin plate [18]. Thereby, 

we can define the electrical displacement along the out-of-plane direction as 

Dz = ε33Ez + e31Sxx + e32Syy + e36Sxy (10) 
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where ε33 = 1433.6 ε0 is the dielectric permittivity with ε0 being the vacuum permittivity, Ez is the electric field, and e3i are the 
piezoelectric ceramic constants. 

In this work, the electrical field is uniform along the z-direction, and then, the electrical voltage is given by V = − tEz and the charge 
on the PZT surface is Q =

∫

ADZdA. Therefore, the charge variation can be obtained by combining the Eqs. (9) and (10) with the above 
assumptions as 

Q = Θ − L2ε33V
t

(11)  

where t = 0.1 mm is the thickness of the PZT layer, A = L2 is the area of the PZT patch, and Θ is defined as 

Θ = −
h
2

∫

A
(e31

∂2w
∂x2 + e32

∂2w
∂y2 )dA (12) 

The partial derivatives in the integrand can be expanded by Taylor series in the form as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2w
∂x2 =

w(xi + ΔL, yi) − 2w(xi, yi) + w(xi − ΔL, yi)

ΔL2

∂2w
∂y2 =

w(xi, yi + ΔL) − 2w(xi, yi) + w(xi, yi − ΔL)
ΔL2

(13)  

where the higher order infinitesimal can be omitted when the incremental step ΔL is enough small. 
Substituting Eq. (13) into Eq. (12), Θ can be directly defined as the integral of the displacement w. Therefore, we can get the value of 

the Θ directly from numerical integration. It is reasonable to treat the PZT patch as a current source in an AC electrical circuit with a 
defined resistance R0 = 1.2 kΩ. The amplitude of the current is given by I = ωQ. Therefore, the amplitude of the current in the AC 
electrical circuit can be written as 

I =
ω|Θ|

1 + ωε33R0A/t
(14) 

We therefore arrive to the equation to compute the average harvesting power [18] 

P =
1
2
I2R0 =

ω2R0|Θ|
2

2(1 + ωε33R0A/t)2 (15) 

In the following sections, we will use the MST method and the piezoelectric power formulated in Eq. (15) to investigate the energy 
harvesting performance of the topological vortex. 

4. Energy harvesting with topological cavities 

The energy harvesting performance of the mechanical metamaterial thin plates are our primary objective. We use the MST method 
together with piezoelectric theory to study the influence of the distortion amplitude Ai and the vortex radius ξi on the energy harvesting 
performances of the mechanical metamaterial thin plates. 

Fig. 4. Variation of the average harvesting power against the excitation frequency for the trivial (n = 0) and nontrivial (n = 1) clusters. The 
frequency axis is truncated within the bandgap. A bare plate without any resonators is considered for comparison. 

Z. Wen et al.                                                                                                                                                                                                            



Mechanical Systems and Signal Processing 162 (2022) 108047

9

Figure 4 shows the output average power P of electrical energy harvesting in the metamaterial plates with the finite vorticity n = 1 
and n = 0, as shown by the blue and red lines, respectively. For reference, we also calculate the power for a bare plate. If not specified, 
the locations of the point source and the PZT layer remain unchanged as indicated in Fig. 3(c), respectively. For the trivial lattice (n =
0), we observe that at the Dirac frequency the response spectra of the output power do not capture a peak, remaining at a quasi-zero 
level since vibrations are almost prohibited by the bandgap. This is understandable given that the trivial lattice does not embody a 
phase winding process, therefore does not support any topological bound states in the bandgap. For the topological vortex (n = 1), the 
output power spectra, like that of the flexural wave response at the vortex core in Fig. 3(a), accurately capture a peak power about 4.93 
mW at the Dirac frequency. It can also be found that two peaks appear close to the upper limit of the common bandgap resulting from 
the conventional localized modes as shown in Fig. 3(a). Among the two peaks, one even gains a higher output power than that at the 
Dirac frequency although the displacement amplitude in Fig.3(a) is smaller. This can be explained by Eq. (12) since the electric power 

Fig. 5. (a) Power spectra for elastic energy harvesting modulated by the distortion amplitude Ai and the out-of-plane displacement fields with 
distortion amplitudes (b) A1 = 0.11875a0 and (c) A2 = 0.1175a0, respectively. (d) Response spectra of output average power for energy harvesting 
regulated by the vortex radius ξi and the out-of-plane displacement fields with vortex radii (e) ξ1 = 0.25 a0 and (f) ξ2 = 0.3 a0, respectively. 
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is related to the elastic strain of the plate rather than to the amplitude of displacement. In addition, we plot the piezoelectric response 
spectrum of the bare plate without any resonator as depicted by the yellow line, which possesses a stable output power about 0.17 mW. 
The peak value of the output power induced by the topological bound state is about 30 times higher than that of a bare plate, showing a 
remarkable enhancement. In stark contrast, the power level for n = 0 around the Dirac frequency is only 0.9% of that of the bare plate 
owing to the existence of the bandgap. 

In Fig. 5, we study how the distortion amplitude Ai and the vortex radius ξi affect the piezoelectric power spectra. In Fig. 5(a), we 
consider a series of distortion amplitude A0 = 0.12a0, A1 = 0.11875a0 and A2 = 0.1175a0 to evaluate their effects on the power 
spectra. With the decrease of the distortion amplitude, the amplitude of output power P induced by the topological bound state also 
decreases gradually while its peak frequency remains pinned to the Dirac frequency fD = 1294 Hz. Since the topological bound states 
for these three scenarios have very similar wave patterns as seen in Figs. 3(c), 5(b) and 5(c), the decrease in vibrating amplitude also 
leads to a decrease in strain value that explains the behavior of the power peak’s evolution. On the other hand, the frequency of the 
topological power peak is determined by the undistorted honeycomb lattice, fixed at the Dirac frequency, and is not easily affected by 
the distortion amplitude Ai. 

The effect of the vortex radius on the power spectra is shown in Fig. 5(d). We select a set of vortex radii ξ0 = 0.1a0, ξ1 = 0.25a0 and 
ξ2 = 0.3 a0 to study their effects on the output power spectra. Contrary to the trend shown in Fig. 5(a), the amplitude of P at the 
topological peak decreases gradually with the increasing vortex radius, meanwhile its corresponding frequency remains firmly pinned 
to the Dirac frequency. This difference is understandable because of the Kekulé distortion function Δ(riα) = A0tanh(|riα|/ξ0 ) as dis-
cussed in Sec. 2, since the vortex radius ξi is inversely correlated with the Kekulé distortion Δ(Riα). Likewise, from Fig. 3(c), Figs. 5(e) 
and 5(f), we see the maximum value of the displacement fields gradually decreases with the increase of the vortex radius ξi while the 
field distribution keeps unchanged, and then the amplitude of output power P will decrease due to the reduction of second derivative in 
Eq. (12). 

We now examine the harvesting power resulting from the localized modes near the upper edge of the band gap. These two peaks 
belong to high-order trivial cavity modes since they can be shifted into the continuum of bulk bands [42,43]. The main peak values do 
not follow a monotonous behavior with the decrease of the distortion amplitude or the increase of the vortex radius. Besides, the peaks 
of the power spectra at the upper edge of the band gap also experience a spectral shifting. Comparing the topological and trivial bound 
states induced power peaks, we conclude that: 1) the topological peak is more stable in frequency and has high quality factor which is 
promising for sensing application; 2) the behavior of topological peak is predictable making it more feasible and controllable in 
functional design. 

5. Robustness study of topological cavities 

In this section, we systematically study the robustness of power peaks in the metamaterial thin plates against both symmetry- 
preserving and symmetry-breaking defects. The symmetry-preserving defects will not shift the Dirac frequency of the system, and 
thus satisfy the particle-hole symmetry that is required to protect the related topological states. On the contrary, the symmetry- 
breaking defects are rather casual, for instance, resonators with random resonant frequency shifting [65]. Detailed information is 
presented and discussed below. 

Fig. 6. (a) Color maps showing the level of harvesting power spectra when symmetry-preserving defects are introduced at the vortex core. As 
illustrated in panel (b), the resonators inside the yellow circle (of radius r) are moving back to their primitive honeycomb sites. The flexural wave 
pattern is shown for one particular defect ratio r=0.15Rd with Rd being the radius of the whole cluster. 
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5.1. Symmetry-preserving defects 

For the symmetry-preserving defects we first investigate the evolution of the output average power P with the symmetry defect 
ratio r/Rd, where r and Rd are the radii of defect area and cluster, respectively. The defects are introduced by moving the resonators 
within the defect area [see the yellow circle in Fig. 6(b)] back to the primitive honeycomb arrangement without the Kekulé distortion 
(Δ = 0 inside the defect area). We gradually increase the defect ratio up to 0.3, and plot the corresponding spectra of the harvesting 
power P in Fig. 6(a). For the topological peak, the frequency undergoes a slight perturbation around the Dirac frequency fD =

1294 Hz, showing only 0.62% spectral shifting even when the perturbation is increased to an extremely high level of r/Rd = 0.3. 
The reason for the strong robustness of the topological bound state is that the structural Dirac frequency of the defect is still consistent 
with that of the Kekulé distorted vortex, thus preserving the particle-hole symmetry. Figure 6(b) depicts the flexural wave field of 
topological bound state for r/Rd = 0.15, revealing that the flexural wave is still confined in the vortex core but now allowing more 
energy penetration into the crystal bulk. Different from the topological peak, the trivial power peaks show poorer robustness. Beyond 
the evident spectral shifting, there appear some random peaks of high uncertainty. This behavior results from the fact that for each 
symmetric-breaking defect, we are dealing with new structural configurations that induce rather casual trivial modes due to the 
complex coupling effects. 

Fig. 7 shows the evolution process of the output power P for another symmetry-preserving defect, namely when the six resonators 
around the vortex center are arranged as a hexagon which endures location expanding or shrinking in comparison to the primitive 
honeycomb lattice. The output power P induced by the topological bound state shows excellent robustness both in frequency and 
amplitude. Specifically, there is only a maximum 0.15% frequency fluctuation (corresponding to 2 Hz) when the resonators shrink or 
expand by 10%. The robustness of the topological power peak can again be explained by the fact that such defect is symmetrical at the 
Dirac frequency. With the perturbation of six resonators at the vortex core, there appears obvious frequency shifts and new peaks 
caused by trivial localized modes. We further display the out-of-plane displacement fields at A-D points in Fig. 7(b)-(e), respectively. It 
can be observed that the topological bound states at A [Fig. 7(b)] and C [Fig. 7(d)] points almost share the same radiation pattern as the 
undistorted case in Fig. 3(c). However, the radiation patterns at B [Fig. 7(c)] and D [Fig. 7(e)] points are totally different, both 
presenting large energy leakages into the crystal bulk especially along the three directions of narrowest bandgap, as depicted in Fig. 1 

Fig. 7. (a) Power map for another symmetry-preserving defect, similar to Fig. 6, here the vortex is perturbed by shrinking or expanding the six 
central resonators away from the primitive honeycomb lattice sites. The radiation patterns of the topological state when the six resonators are (b) 
expanded at the point A or (d) shrunken at the point C by 10% relative to the initial position R. The field patterns for the third peak when the six 
resonators are (c) expanded at the point B or (e) shrunken at the point D by10% relative to the initial position R. 
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and Fig. 2(b). Such uncertainty and weak confinement make the trivial localized modes less useful although the induced power peaks 
at B and D have high values and relatively broadband property. 

5.2. Symmetry-breaking defects 

There are many choices for the symmetry-breaking defects that lead to a spectral shift from Dirac frequency, such as geometrical 
defects resulting from a perturbation in the height and the diameter of the resonator’s neck and head, or slight variations of material 
parameters [65]. Overall, the above-mentioned defects will mainly affect the resonant frequency. The vortex core is of particular 
significance for the topological state, hence is more vulnerable to such random defects. In this context, we study the influence of the 
symmetry-breaking defects by introducing a random distribution of the resonant frequencies for the six resonators nearest to the 
center. The randomness obeys a uniform distribution with maximum deviation δf . As depicted in Fig. 8, for one typical disturbed 
system when δf = 50 Hz, the topological power peak [see Fig. 8(a)] conserves a single peak at the Dirac frequency fD = 1294 Hz, 
but with a decrease in the power peak’s amplitude as compared to the undistorted case in Fig. 4. When the random frequency 
disturbance is increased to the maximum value δf = 200 Hz (normalized deviation ratio δf/fD = 0.155), the topological power peak 
splits into two peaks E and F, nevertheless the frequency shift is still within 5 Hz. We exhibit the displacement fields at peaks E and F in 
Figs. 8(b) and 8(c), respectively. Given that the six centered resonators have different frequency shifts (as asymmetric defect) with the 
same max δf, it is possible to induce multiple peaks around the original Dirac frequency. From the fields displayed in Fig. 8(b) and (c), 
one can find that the two radiation patterns are very similar to the one without distortion in Fig. 3(c). The two splitting peaks E and F 
are the result of hybridization process between the topological mode and the trivial defect mode caused by frequency disorders. For the 
trivial localized modes at higher frequencies, they evolve into complex profiles due to randomness. 

6. Conclusion 

An energy harvesting system based on the topological cavity in phononic thin plate is designed and evaluated by theoretical 
calculation and FEM verification. The topological cavities are constructed at the center of the phononic crystals by mimicking the 
Jackiw-Rossi binding mechanism with Kekulé modulation. We consider a hexagonal lattice with spatially uniform distortion amplitude 
and Kekulé phase to study the distortion induced band gap opening process by means of the PWE method, and find the common 
bandgap of the aperiodic lattice. The bandgap width is exactly zero at the vortex center. This is very useful for the design of a to-
pologically protected device for elastic energy harvesting. The output power is computed by a combination of the MST and piezo-
electric harvesting algorithm. The harvesting power induced by the topological bound state is about 30 times that of the bare plate. The 
distortion amplitude and the vortex radius of the Kekulé distortion only modulate the peak values of the topological peaks but will not 
shift the peak from the Dirac frequency. The robustness study shows that the output average power of the phononic plates can resist to 
both the symmetry-preserving and symmetry-breaking defects at moderate disorder level. Beyond the energy harvesting functionality, 
we expect this topological cavity will offer a robust solution for practical applications like sensing, signal processing and structural 

Fig. 8. (a) Response spectra of the output power P in non-trivial Kekulé cluster of resonators modulated by a random distribution of the frequencies 
of the six resonators around the vortex center, with a maximum deviation frequency δf. The topological peak of the output power and the bound 
states of displacement field for (b) peak E and (c) peak F at Dirac frequency show strong robustness even when δf reaches 200 Hz. On the other hand, 
when increasing δf to 200Hz, the disorder produces two new localized states E and F. 
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Appendix A. . Derivation of the plane wave expansion 

The waves propagating in periodic systems can be written as Floquet-Bloch waves, 

w(r) =
∑

G
w(G) e− j(G+K)⋅r, (16)  

where K denotes the Bloch wave vector and G = bg1 +dg2 the reciprocal lattice vector. In the reciprocal lattice, b and d are integers, g1 
and g2 are the basis vectors of the reciprocal lattice with ai ⋅ gj = 2πδij(i, j = 1,2.), where ai denote the honeycomb lattice vectors. 

Using Floquet-Bloch theorem from Eq. (16) for the mechanical metamaterial plate in Eq. (2) and the resonators in Eq. (3), we 
acquire 

S
(

D
(
(kx + Gx)

2
+
(
ky + Gy

)2
)2

− ω2ρh
)

w(G) =

∑

α
kn

(

w1(Rα) −
∑

G’

w(G’) e− j(G’+K)⋅Rα

)

ej(G+K)⋅Rα ,

(17)  

where S =
̅̅̅
3

√
a2/2 is the area of the supercell, K = [kx, ky] and G = [Gx,Gy]. Periodic boundary conditions of resonators in the unit cell 

implied by Floquet-Bloch theorem can be written as 

w1(Rα) = w1(0α) e− jK⋅Rα (18)  

where w1(0α) is the Bloch displacement of the resonator α in the reference supercell. Substituting Eq. (18) into Eqs. (17) and (3), we can 
obtain the following equations 

((
(kx + Gx)

2
+
(
ky + Gy

)2
)2

a4 − Ω2
)

w(G) =

∑

α
γαΩ2

α

(

w1(0α) −
∑

G’

w(G’) e− j(G’+K)⋅Rα

)

ejG⋅Rα ;

(19)  

− Ω2w1(0α) = Ω2
α

(
∑

G
w(G) e− jG⋅Rα − w1(0α)

)

, (20)  

where Ω2 = ω2ρa2h/D is the normalized frequency, γ = mR/(ρSh) the normalized mass of the system, Ω2
α = knρa2h/mnD the 

normalized resonance frequency of each resonator. 
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Appendix B. . Derivation of the multiple scattering theory 

By some algebraic substitution and using Eqs. (17) and (3), the equation of motion can be written as [60] 
(
∇4 − ω2ρh

/
D
)
w(r) =

∑

num
tnumw1(Rnum)δ(r − Rnum), (21)  

where Rnum = R(Riα) runs for all lattice sites. The stiffness coefficient is 

tnum =
γnumS(Ωa)2

a4(1 − (Ωa)2
/(Ωnuma)2

)
(22)  

where Ω, γnum, Ωnum and S are the normalized quantities as defined in Sec. 3.1, num denotes the index of resonators attached on the 
plate. 

Here, the Green function G0 is used to investigate the flexural modes of the metamaterial thin plates, and we rewrite Eq. (11) as [60] 
(
∇4 − Ω2/a2)G0(|r| ) = δ(|r| ) (23) 

In the derivation, the resonators are treated as punctual sources. The scattering fields and point source excitation of each resonator 
can be defined by Green function. The Green function is defined by the zeroth-order Hankel function and the modified Bessel function 
of the second kind. The Bessel function is singular at |r| = 0. Therefore, we need to define the case of |r| = 0 for the Green function as 
follows. 

G0(|r|) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j
8k2

[

H0(k|r|) +
2j
π K0(k|r|)

]

|r| ∕= 0;

j
8k2 |r| = 0,

(24)  

where k =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

( 2π f)2
( ρh)/D4

√

is the wave number and f is the working frequency. 
The solution of the flexural wave modes [60] can be therefore defined as 

w(r) = ψ0
( ⃒
⃒r − Reps

⃒
⃒
)
+
∑

num
TnumΛe(Rnum) G0(|r − Rnum| ) (25) 

From Eq. (15) we see the flexural waves in the plate are determined by the external excitation ψ0
( ⃒
⃒r − Reps

⃒
⃒
)
= G0

( ⃒
⃒r − Reps

⃒
⃒
)

and 
the scattering of all the resonators, Reps denotes the position of the external excitation and Λe(Rnum) is the scattering coefficients of the 
resonator located at Rnum when excited by an external punctual source. The coefficients Tnum of the system can be denoted as [60] 

Tnum =
tnum

1 − jtnum/(8k2)
(26) 

Here, we use the Green function as defined in Eq. (24). 

Fig. 9. The 3D modeling of Jackiw-Rossi vortex in phononic plate. The red and yellow stars represent the excitation point (EP) and vortex center 
(VC), respectively. The phononic cluster is surrounded by a PML to mimic infinite space. 
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Appendix C. . Finite element modeling 

We establish a full-scale 3D model in thin plate that contains a topological vortex (see Fig. 9) to simulate the mechanical response as 
studied in Fig. 3. For FEM calculations, we use free tetrahedral elements to mesh the 3D model. The meshing contains about 3 million 
elements with about 120 million degrees of freedom for solving in COMSOL. A ring-shaped perfectly matched layer is surrounding the 
calculation domain to avoid reflection at the boundary. The star symbols represent the excitation source (red) and the vortex center 
(yellow). 
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