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a b s t r a c t

Metamaterials enabling multifunctional wave control have long attracted great interest, but remain
largely unexplored in ventilation-required settings. Using the space-coiling strategy, we design and
fabricate a compact acoustic meta-structure consisting of labyrinth resonators arranged around a
central air passage. Such meta-structures provide a promising route to design well-ventilated and
simultaneously highly-effective sound-proofing barriers allowing broadband (about one octave band)
transmission loss up to almost 30 dB in the range of 660–1200 Hz. More interestingly, due to the
interferences between the forward propagating waves and those re-radiated by the surrounding
resonators, some asymmetric Fano-like resonances are observed appearing in the transmission gap.
This Fano-like resonance is very useful to open a high transmission window at frequencies of interest
by changing the length of coiled-up channels. Our findings are both numerically and experimentally
verified, which may stimulate multifunctional applications, such as broadband sound insulation
with high transmission loss and tunable acoustic communication, especially in ventilation-required
environments.

© 2021 Published by Elsevier Ltd.
1. Introduction

Noise control has attracted long-lasting interest owing to its
xtensive applications in industrial and living fields [1]. Limited
y the mass law, this task is rather challenging at low frequen-
ies if one resorts to conventional acoustic barriers that have to
e extremely bulky and thus unpractical in engineering. Fortu-
ately, the advent of metamaterials and metasurfaces [2,3], leads
highly effective way enabling a reduction of barriers thickness
own to reachable and even deep-subwavelength scales [4–8].
he past decades have witnessed lots of worthwhile endeav-
rs targeted for sound-proofing metamaterials and structures,
uch as micro-perforated panel absorbers [9,10], mass-decorated
embranes/plates [11–13], foam-filled sandwich panels [14,15]
nd metasurface-based absorbers [16–21], just to name a few.
n spite of the great achievements, however, these schemes all
uffer from the drawback of airflow blocking that people have
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to face, either for daily or special applications requiring, for in-
stance, nature ventilation, heat convection and wind-resistant
functionalities, etc.

Blocking low-frequency noise without airflow obstruction,
intuitively, these two competing goals are hard to reach a sat-
isfactory trade-off. Because of this, early efforts were limited to
only a few industries such as architecture where monotonous
facade systems like double-leaf facades and louvers were de-
signed for housing ventilation [22,23]. Some recent efforts in
the field of metamaterials, however, constitute a new glance
of the possibility for unconventional wave control in ventilated
environments. García-Chocano et al. [24], targeted for traffic
noise shielding, constructed a sound barrier consisting of mi-
croperforated cylindrical shells in meter scales and reported its
broadband absorption performance. With tactfully engineered
Mie resonances, Cheng et al. [25] have developed an ultra-sparse
metasurface that is merely subwavelength-thick but highly re-
flective for low-frequency sound. Afterwards, based on either
reflection or absorption mechanisms, a rapidly growing interest
has been attracted to this topic reporting various ventilated
acoustic systems, typically including metasurfaces composed of
Helmholtz resonators [26–28] and labyrinth-type structures [29–
32]. Particularly, Ghaffarivardavagh et al. [30] recently reported
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Fig. 1. The engineered sound barriers with ventilation functionality. (a) Photo-
graph of the fabricated sample. Schemes from the (b) front and (c) section views
to show the embedded labyrinth cavities. The sample has parameters: lattice
period H = 24 mm, cylinder diameter Dc = 100 mm, hole diameter Dh =

4 mm, opening angle of cavity inlet θ = π/4, separation between neighbor
partitions d = 9 mm, and partition thickness t1 = 2 mm and t2 = 4 mm.

a spiral coiling metamaterial that comprises nearly 60% open
area for air flow. This structure was demonstrated useful for
reducing harmonic industrial noise by employing the narrow
band Fano-like interference spectrum.

One ever-lasting goal in noise control engineering is to reduce
structural complexity, to lower and widen the sound shielding
bands, and even to expand multifunctional applications [30,32,
33]. Though progresses have been reported, most recent efforts
are still bound to a single function, suffering from either narrow
bandwidth, low transmission loss or very limited functionality.
In view of this, inspired by the space-coiling strategy, this work
reports a carefully engineered sound barrier that not only has
compact structure but also enables broadband sound insulation
at low frequencies. Furthermore, we investigate the acoustically
induced transparency (AIT) phenomena of hybrid model that con-
tains two detuned labyrinth resonators in the unit cell. Through
changing the length of coiled channels, it is possible to tune
a narrow transmission window to any desired frequencies in
the forbidden band, which may facilitate multifunctional appli-
cations beyond sound-proofing realm, such as tunable sound
transmission and communications.

2. Results and discussion

2.1. Design of ventilated sound barriers

Fig. 1(a) shows a photography of our sample fabricated with
the 3D printing technique, from which a circular passage allowing
air flowing is clearly seen. For a better illustration of the internal
structures, we additionally provide the front and section views
in Fig. 1(b) and (c) showing some folded air cavities separated
by polymer partitions. The front view shows that each layer is
divided into four labyrinth cavities that are coupled together
through the central air passage (of diameter Dh). Meanwhile,
along the axis several unit cells (of lattice period H) pile up to
form an acoustic metamaterial capable of both nature ventilation
and sound insulation. As illustrated in Fig. 1(c), when sound
waves enter into the engineered meta-structure, their interaction
with the re-radiated waves by the surrounding resonators, if
destructive-interfered, will impede waves to propagate.

2.2. Broadband sound-proofing performance

To demonstrate the sound isolation performance we calculate,
using the COMSOL Multiphysics software, the band diagram and

transmission spectrum of the quasi-one-dimensional problem.
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For the air, the involved parameters are the mass density ρ0 =

1.29 kg/m3 and speed of sound c0 = 343 m/s. Besides, it is
reasonable to assume the polymer partitions as sound rigid walls
since their impedance is far larger than that of air. The computed
band diagram is shown in Fig. 2(a) where the shaded background
represents the predicted low-frequency bandgap ranging from
660 Hz to 1200 Hz, almost covering one octave band. Inter-
estingly, near the lower edge of the bandgap appear three flat
bands which are attributed to the fundamental resonance of the
labyrinth cavities as depicted in the inset of Fig. 2(a). In order
to verify these predictions, we next simulate for finite systems
containing n layers to compute the sound transmission loss (STL)

STL = 10 log10 (1/τ) (1)

where τ denotes the power transmission coefficient. As rendered
n Fig. 2(a), within the bandgap waves are rapidly attenuated with
he increasing of layers. The STL is averagely above 30 dB with
nly four layers (n = 4), which will be selected in this study

in consideration of a balance between the sample thickness and
sound isolation performance. For a single layer (n = 1), what
clearly stands out is the appearance of Fano-like resonance [34,
35] which spectrally coincides with the flat bands. The increasing
layers complicate this Fano-like profile but preserve the typical
asymmetric features, i.e., showing both enhanced transmission
and enhanced reflection within a narrow frequency range.

Apart from the STL, our metamaterial barriers can be char-
acterized in terms of effective material properties in that the
unit cell is in deep-subwavelength scales. Inspired by the work
of Fokin et al. [36], we employ the retrieval method to ex-
tract effective properties of acoustic metamaterials which, put
simply, equates two systems if they show identical transmis-
sion and reflection characteristics. Finite element simulations
enable us to solve transmission problems characterized by re-
flection coefficient R and transmitted coefficient T . With these
two transmission parameters, we can derive the effective acoustic
impedance and refractive index, and finally extract the effective
properties, i.e., mass density ρeff and bulk modulus Keff , via the
standard method.

Now, this retrieval method is employed to investigate the
influence of some structural parameters, typically including the
lattice period H and hole diameter Dh. Except these two variables,
all other parameters used in the simulations remain the same as
studied in Fig. 2(a). As shown in Fig. 2(b)–(e), in both scenarios
we can observe some frequency ranges within which the effective
bulk modulus Keff becomes negative, while the extracted density
ρeff , though showing Fano-like resonance, still keeps being pos-
itive. Sound cannot propagate within this single-negative band,
but instead the imaginary wavenumber forces it to be evanescent
waves. Note that H = 24 mm [see Fig. 2(b)] is exactly the case
we studied in Fig. 2(a). Indeed, a comparison between Fig. 2(a)
and (b) reveals that this single-negative feature is well captured
by the bandgap, indicating that such negative response actually
originates from monopolar resonance as reported in Ref. [37]. In
terms of parametric influence, a closer look to Fig. 2(b)–(e) shows
that the lattice period has neglectable influence on the bandgap,
while the size of ventilation holes slightly matters, which is
understandable in that the parameters merely slightly change
the length of folded channel, and consequently resulting a mild
cavity resonance shifting (see Supplemental Material, Fig. S1). The
decrease of hole diameter tends to increase the transmission loss,
but on the other hand will deteriorate the ventilation perfor-
mance. A trade-off has to be made between the two competing
goals. This goal can be otherwise achieved by properly increasing
the number of unit cell layers (see Supplemental Material, Fig.
S2).
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Fig. 2. Sound insulation performance of the ventilated barriers. (a) Calculated band diagram and STL spectra for barriers containing n layers. The shaded background
presents the bandgap. One typical eigenfield is depicted in the inset at the selected red point. Parameter dependence of the effective bulk modulus Keff and effective
density ρeff for two scenarios: variation of lattice period H [(b) and (c)] and hole diameter Dh [(d) and (e)]. The results are normalized to the material parameters of
air, i.e., the bulk modulus K0 and mass density ρ0 . The zero-value dashed lines serve as a guide to see the negative response. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Enhanced transmission associated with the Fano resonance induced acoustic transparency. (a)–(c) Schematic and band diagrams for various metamaterials
containing different labyrinth cavities, i.e., quarter, half and hybrid models. The insets show typical eigenfields for the selected points on the flat bands. All share
the same color bar as in Fig. 2(a). (d)–(f) Numerically calculated and experimentally measured STL curves for the three metamaterials. Both inviscid (d) and viscid
(e) simulations are implemented to clarify the visco-thermal influence. The shaded background hints the bandgap of the hybrid model. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. (a) Schematic diagram of a hybrid model consisting of a quarter cavity (channel length L1) and a variable cavity of length L2 . (b) Inviscid STL spectra of
hybrid models showing the dependence of acoustic transparent window on channel’s length ratio L2/L1 . The dashed line indicates a hybrid model similar to the one
studied in Fig. 3(c) containing two types of labyrinth cavities, i.e., the quarter and half ones.
2.3. Fano resonance induced acoustic transparency

Through tuning the labyrinth cavities, the proposed metama-
terials are capable of achieving more interesting functionality
such as the Fano resonance induced transparency. As illustrated
in Fig. 3, beyond the barrier studied before, two additional struc-
tures are further explored which differ from each other in their
partition patterns as highlighted in green. For clarity, these three
structures from left to right are named as quarter model, half
model and hybrid model, respectively. We begin by computing
the band diagrams to unravel their resonance properties [see
Fig. 3(a)–(c)]. Note, when compared with the quarter model, the
half model produces more bands within the frequency range
studied. Due to the channel length doubling, we see the funda-
mental resonance is red-shifted from 679 Hz [first flat band in
Fig. 3(a)] to 322 Hz [first flat band in Fig. 3(b)], meanwhile in
Fig. 3(b) a second flat band corresponding to one-order higher
resonance appears at 958 Hz, falling into the frequency range of
interest. For the hybrid model containing both labyrinth cavities,
Fig. 3(c) shows a somewhat hybrid band structure that possesses
some main features as in Fig. 3(a) and (b), but is not merely
a simple superposition of the quarter and half models. Above
the first flat band we observe a broad bandgap that is spectrally
almost the same as that of quarter model. Inside this bandgap
the right half labyrinth cavity additionally produces a resonance-
induced flat band [see the inset in Fig. 3(c)] locating at about the
mid-gap point. As discussed in Fig. 2, such kind of flat band is
closely associated with the asymmetric Fano profile in the STL
spectra, which is likely to open a sound transmission window
inside the bandgap.

To verify this, for the three models we calculate their STL
curves in the absence of visco-thermal damping, as rendered in
Fig. 3(d). It is clear seen that, in all scenarios, some Fano-like
response was excited at frequencies (see labels R1 and R2) that
match well with the flat band predictions. Remarkably, thanks
to the enhanced transmission associated with Fano resonance,
there appears an acoustic transparent window inside the bandgap
at about 920 Hz. In practice, visco-thermal loss is unavoidable
for structures consisting of narrow channels. We therefore im-
plement a group of viscid simulations as shown in Fig. 3(e).
In comparison with the inviscid results, visco-thermal damping
tends to enhance the transmission loss especially when resonance
happens, nevertheless it cannot significantly affect the main
spectral features predicted by the inviscid simulations, such as
the wide forbidden band and the mid-gap transmission window.
In a step further, experiments were performed to validate our
numerical predictions. All the three samples were fabricated via
4

3D printing technique, and were properly installed and measured
according to ASTM standard [38]. As displayed in Fig. 3(f), due to
the machining errors, the resonance response is slightly different
in comparison with simulations, but overall a good agreement
is observed between the calculated and measured spectra. To be
specific, for the quarter model, the measured results consolidate
the predicted low-frequency bandgap whose transmission loss
averagely reaches 30 dB in one octave band. Once hybridized
with different labyrinth cavities, within this bandgap, an acoustic
transmission window is opened at around 920 Hz, matching well
with our band structure and STL predictions.

We now demonstrate that our metamaterials enjoy an advan-
tage of facile tunability, i.e., acoustic transmission window can
be spectrally shifted by changing the length of folded channels.
Again, this exploration is based on a hybrid model whose quarter
cavity (of channel length L1) remains unchanged, but the other
labyrinth cavity has a variable channel length L2, which is achiev-
able by moving the partition to desired positions, see the sketch
in Fig. 4(a). Fig. 4(b) maps the STL spectra of this hybrid model
in dependence of its channel’s length ratio L2/L1. Note that the
white dashed line corresponds to a scenario similar to the hybrid
model studied in Fig. 3(c) whose transparent window locates
at 920 Hz. Beyond this, with the decreasing of channel’s length
ratio, the Fano-like resonance experiences a blue-shifting within
a wide frequency range. This together with the broadband sound
isolation performance may stimulate multifunctional applications
in ventilation environments.

3. Conclusions

In summary, we have designed and fabricated a subwave-
length metamaterial barrier that enables multifunctional sound
control. This sound barrier is carefully designed using the space-
coiling strategy whose labyrinth resonators are circularly ar-
ranged to form a passage allowing airflow to pass through it.
Both the calculated transmission loss and the extracted effective
properties predict its low-frequency sound insulation perfor-
mance, covering almost one octave band from 660 Hz to 1200 Hz.
Beyond blocking sound waves, such labyrinth-type metamaterial
is demonstrated having Fano-like resonance features which, if
cleverly harnessed, is very useful to open acoustic transmission
window in the bandgap. By changing the folded channel length,
it is further shown that this enhanced transmission phenomena
can be easily tuned within a wide frequency range. The nu-
merical predictions have been experimentally verified showing
good agreement with the measured data. We foresee that our
work may inspire multifunctional acoustic applications such as
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hat are unreachable before on circumstances requiring nature
entilation.
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