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Topological phases have recently been realized in bosonic systems. The associated boundary modes
between regions of distinct topology have been used to demonstrate robust waveguiding, protected from
defects by the topology of the surrounding bulk. A related type of topologically protected state that is not
propagating but is bound to a defect has not been demonstrated to date in a bosonic setting. Here we
demonstrate numerically and experimentally that an acoustic mode can be topologically bound to a vortex
fabricated in a two-dimensional, Kekulé-distorted triangular acoustic lattice. Such lattice realizes an
acoustic analog of the Jackiw-Rossi mechanism that topologically binds a bound state in a p-wave
superconductor vortex. The acoustic bound state is thus a bosonic analog of a Majorana bound state, where
the two valleys replace particle and hole components. We numerically show that it is topologically
protected against arbitrary symmetry-preserving local perturbations, and remains pinned to the Dirac
frequency of the unperturbed lattice regardless of parameter variations. We demonstrate our prediction
experimentally by 3D printing the vortex pattern in a plastic matrix and measuring the spectrum of the
acoustic response of the device. Despite viscothermal losses, the measured topological resonance remains
robust, with its frequency closely matching our simulations.
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The possibility of engineering a special kind of electronic
states of topological origin in condensed matter systems
has spurred a revolution in the field [1–3]. Topological states
are robust against microscopic perturbations. This basic
property is known as topological protection, and is at the root
of their potential for future applications in quantum tech-
nologies [4]. Topological states are universally bound to
topological defects in gapped electronic phases. Such
defects can be boundaries between regions of distinct band
topology, as in the quantumHall or quantum spin Hall effect
in two dimensions, which yields extended (propagating)
topological edge modes. Other topological defects are
zero dimensional, which yield topological bound states.
A paradigmatic example is the case of Majorana states
bound to vortices in spinless p-wave superconductors [5].
Majorana bound states are very exotic from many points of
view, and are often presented as a solution to scalable
quantum computation [6]. The topological protection of
these new electronic states usually depends on specific
symmetries being preserved in the system. In the case of
Majorana bound states, this requires the mean field particle-
hole symmetry intrinsic to superconducting phases.
Sonic lattices have long been studied as a way to

engineer the band structure of sound in a number of ways
[7,8]. Recently, this has been extended to topological band

structures, which has lead to the demonstration of topo-
logically protected acoustic edge or interfacial channels
[9–15]. The challenge of creating topologically bound
acoustic modes, analogous to Majorana bound states,
remains open. In this Letter we present a recipe to achieve
this goal by implementing the analog of a Jackiw-Rossi
vortex [16–18] in a two-dimensional triangular sonic lattice
made of rigid cylinders at a distance d. Such a lattice, of
lattice constant a ¼ ffiffiffi

3
p

d, exhibits two Dirac cones, or
“valleys,” at wave vectors K� ¼ ½�4π=3d; 0�, and at a
Dirac frequencyΩD, which has to be computed numerically
[19]. The two Dirac cones are in principle independent and
gapless, but by adding a Kekulé distortion [20] to the
cylinder radii they become coupled, and a gap Δ opens at
ΩD. The effective low energy Hamiltonian of sound then
takes a form analogous to the electronic Dirac equation
with an intervalley gap Δ

H ¼
Z

d2r
X

s¼�
ψ†
sð−isvσ⃗ · ∂⃗rÞψ s þ Δψ†

þψ− þ Δ�ψ†
−ψþ

ð1Þ

where ℏ ¼ 1, v is a velocity, ψ� are the sound amplitudes
on each valley, s ¼ � denotes the two valleys, and σ⃗ are
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Pauli matrices for the Dirac pseudospin [21]. Jackiw and
Rossi demonstrated that making the complex intervalley
coupling Δ position dependent, and by implementing a
vortex in its phase around a given point, a topological
bound state develops at the vortex core. In the fermionic
case, ψ� are Dirac fields related by charge conjugation,
ψ− ¼ −iψ†

þσ2, and as a result the bound state is a Majorana
anyon [22–24]. While this relation does not hold in our
case, we show below that a Kekulé vortex in the sonic
lattice also binds a topological state by the same Jackiw-
Rossi mechanism.
A similar idea was put forward in graphene by Hou et al.

[25], although engineering Kekulé distortions in graphene
remains an open challenge. It is important to emphasize that
in our acoustic implementation, like in the graphene pro-
posal, the charge-conjugation relation does not hold, so this
bound state is not an actual Majorana (i.e., an equal-weight
superposition of particles and holes). It is, however, a
“fractionalized” state [25] of topological origin, the closest
possible acoustic analog of Majorana bound state, with the
crucial Majorana self-conjugation property replaced by an
exactly vanishing valley polarization at any point r, i.e., an
equal weight for jψþðrÞj and jψ−ðrÞj components in the
wave function.
Figure 1 shows a sketch of our sonic lattice, a finite

cluster of rigid cylinders forming a triangular lattice. On
this lattice we implement intervalley coupling through a
Kekulé distortion that consists of a position-dependent
variation of the cylinder radius RðrÞ

RðrÞ ¼ R0 þ δRðrÞ cos ½K · rþ ϕðrÞ� ð2Þ

where K ¼ Kþ −K−, R0 stands for the undisturbed
radius, δRðrÞ is the radius variation, and ϕðrÞ is a phase.
In the pristine lattice with uniform RðrÞ ¼ R0 the two

Dirac cones are gapless. If we consider a unit cell with three
cylinders, matching the Kekulé periodicity, the Brillouin
zone folds the two Dirac cones onto the Γ point. A Kekulé
distortion with spatially uniform δR and ϕ produces an
intervalley coupling Δ ∼ eiϕδR that lifts their degeneracy
and opens a band gap around the Dirac point [21]. The
Jackiw-Rossi vortex depicted in Fig. 1, in contrast, is a
nonperiodic configuration realized by position-dependent
perturbation δRðrÞ ¼ δR tanhðr=ξÞ for a certain vortex
radius ξ, and ϕðrÞ ¼ ϕðx; yÞ ¼ n arctanðy=xÞ, where n is
called the winding number, and is n ¼ 1 in our case.
Crucially, the intervalley phase eiϕðrÞ has winding number
n ≠ 0 around the vortex core, which makes the vortex a
topologically nontrivial defect.
In what follows, we show, by a combination of simu-

lations and experiments, that the artificial cluster with the
n ¼ 1 Kekulé vortex described above supports an acoustic
Majorana-like state pinned at the Dirac frequency, and
realizes the Jackiw-Rossi binding mechanism in an acous-
tic setting. The tanh radial profile of the vortex makes
δRð0Þ ¼ 0 at the core, ensuring continuity. The core is thus
locally gapless, while its contour remains locally gapped at
the Dirac frequency ΩD, as depicted in the perimeter of
Fig. 1. A topological state becomes bound to the gapless
core, but due to the winding of the surrounding intervalley
coupling its frequency is not shifted by the confinement. It
thus remains exactly at ΩD regardless of the value of the
confinement radius ξ, as long as the cluster radius is much
greater than ξ. This property is unique to topological
confinement, and is the reason that Majorana bound states
have zero energy in superconductors. A second essential
property of topologically bound states is topological pro-
tection. Similar to the case of Majoranas in vortices of
p-wave superconductors, we expect that our bound state
will remain pinned at the Dirac point under any applied per-
turbation, as long as it preserves the particle-hole symmetry
associated to its topological class. In other words, the
acoustic counterpart to the particle-hole symmetry, when
preserved, should keep the topological bound state entirely
robust and fixed at ΩD regardless of any symmetry-
preserving defects in the cluster.
To demonstrate these two effects we simulate, using the

COMSOL Multiphysics software, the excitation of different
clusters by a monopole source (point S) close to its center,
see Fig. 2(a). We probe the response of the system in the
vicinity of the vortex core, located at P. We compare the
spectral response of a topologically trivial gapped cluster
without a vortex (n ¼ 0) and the nontrivial (n ¼ 1) cluster
of Fig. 1. The specific parameters are R0 ¼ 0.35d,
δR ¼ 0.15d, and ξ ¼ 2a. As expected, the n ¼ 0 trivial
cluster exhibits a band gap [orange region in Fig. 2(b)]. The
nontrivial system shows a similar gap, but in addition binds

R R0 −δ

R R0 + δ

FIG. 1. An acoustic analog of a topological superconductor
vortex made of rigid cylinders of varying radii, arranged in a
finite triangular sonic lattice. The color of the cylinders illustrates
the radius distortion R0 � δR, as given by Eq. (2). The Kekulé
phase ϕ, together with the local intervalley gap as one moving
around the vortex, are depicted around the perimeter.
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two strongly localized states, labeled P1 and P2, within the
vortex at frequencies inside the band gap. Their spatial
profile is shown in Figs. 2(d) and 2(e). We note that while
both states are strongly bound, the confinement of P2 state
is slightly less than the P1 state, and shows slower decay
along certain directions.
At this point, it is not clear which one of these states, if

any, is of topological origin and which one is an ordinary
defectlike state. Interestingly though, the P1 peak appears
exactly at the Dirac frequency ΩD ¼ 0.88. In order to
elucidate their origin we study their normalized frequency
Ω as a function of the normalized Kekulé distortion δR=d,
see Fig. 2(c). As we gradually increase the distortion, the
state P1 (solid dots) remains always inside the gap, and is
found to emerge directly from the Dirac point. This is
consistent with a P1 state of topological origin. (Note that it
is not possible to reduce the modulation to δR=d≲ 0.03
without increasing the size of our simulation cluster, as the

gap becomes so small that the confined state leaks out of the
sample.) In contrast, the second peak P2 emerges from bulk
band only for a sufficiently strong distortion δR=d≳ 0.08. It
is thus a trivial defect state, analogous to a Matricon-Caroli
excitation [26] in a p-wave superconductor vortex.
We now demonstrate that the P1 state also enjoys the

second property of topologically bound states, topological
protection against local defects. In contrast, the trivial P2

state is frail. To this end we simulate local defects in the
vortex cluster, in the form of gapless circular regions of
arbitrary size and position close to the core, wherein
δR ¼ 0. The defects disrupt the vortex locally, while
preserving the requisite particle-hole symmetry, i.e., with-
out shifting the Dirac frequency ΩD. The frequency of a
true topological vortex state should thus remain completely
insensitive to them.
The defect regions are marked with blue dashed lines in

Fig. 3. The defect radii RD ¼ md are labeled by an integer
m. Their centers are chosen either at the core [panel (a)] or
displaced [panel (b)]. The corresponding spectral responses
are shown to the left of each defect, and reveal that
regardless of defect parameters, the P1 state remains strictly
pinned to the Dirac frequency ΩD. This is true even though
its spatial profile (shown in red in the spatial sketches)
exhibits strong variations due to the defects. Other peaks of
trivial origin and varying frequency, similar to P2, are
found to enter the gap, particularly for the larger defects.
The remarkable resilience of P1 against arbitrary defects
once more confirms that it is fundamentally different from
all other states, and that it is produced by topological
confinement in the particle-hole symmetric vortex. Its
general behavior, as shown in Figs. 2 and 3, is analogous
to that of a Majorana bound state in a p-wave super-
conductor vortex.
Finally, we have fabricated a physical realization of our

Kekulé vortex by 3D printing the cluster pattern of Fig. 1 in
a plastic matrix, and measuring its acoustic response.
A photograph of the sample is shown in Fig. 4(a). The
sample has a diameter of 325 mm and a cylinder height of
5 mm. On top of the plastic cylinders that can be considered
acoustically rigid we attached a transparent lid, into which
holes were drilled to hold a microphone (probe, P) and the
speaker (source, S), see Fig. 4(b). We used a National
Instruments multifunction DAQ card PXIe-6259 to gen-
erate the excitation signal as well as to measure and analyze
the acquired response signal. A SAMSOM SA200 power
amplifier was used to amplify the excitation chirp signal
emitted through an AIYIMA 23 mm diameter speaker. The
receiving signal was detected through a Bruel and Kjaer
4954 1=4 inch microphone, located 35 mm away from the
speaker. The data were collected and digitally processed in
a computer. In order to avoid unwanted reflections at the
open rim of the 2D cavity (as formed between the lid and
the cluster) we surrounded the sample with absorbing foam.
The narrow channels between neighbor cylinders and also
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FIG. 2. (a) Schematic of the cluster with a magnification of its
core showing the locations of sound excitation (S) and probing
(P). (b) Calculated pressure jPj spectra for a topological trivial
(n ¼ 0) and nontrivial (n ¼ 1) cluster, with δR=d ¼ 0.15. The
shaded background represents the complete band gap. Frequency
ω is normalized as Ω ¼ ωa=2πc, with c being the speed of sound
and a the lattice period. (c) Evolution of the localized states as a
function of the distortion δR=d. The horizontally dashed line
indicates the Dirac frequency, ΩD ¼ 0.88. (d),(e) Pressure
amplitudes jPj in real space for the two peaks P1 and P2 of (b).
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the gap between the lid and the free upper cylinder surface,
constitute an unavoidable source for high viscothermal
losses in the crystal lattice, against which a topological state
is unfortunately not expected to be protected.

Despite the viscous losses, we have successfully detected
the topological P1 peak in our sample; see black curve in
Fig. 4(c). The peak is considerably broadened due to
viscous losses, however. The numerical simulations pre-
sented until now were performed for inviscid fluids.
We have repeated them including viscous and thermal loss
mechanisms in the 2D linearized Navier-Stokes equations.
The measured and calculated spectra are compared in
Fig. 4(c). The experimentally observed bound state peaks
at around 19.03 kHz in comparison to the predicted one,
located at 19.18 kHz. Because of the finite height of the
cylinders, an additional viscous boundary layer is formed
on top of them, which is expected to be responsible for
additional broadening, not captured by the 2D simulations.
Temperature variations compared to the simulated results
may also account for the slight frequency shift seen in
Fig. 4(c).
In conclusion, we have demonstrated the topological

binding of a fractionalized acoustic mode, a sonic analog of
a Majorana state in a Kekulé distorted triangular lattice with
a vortex in the Kekulé phase. By deliberately introducing
symmetry-preserving defects in the form of large areas of
substitutional cylinders, we show that the state is topo-
logically protected, and remains pinned to the Dirac
frequency even in the presence of strong defects. Finally,
we have created a physical realization of the acoustic
Kekulé vortex by 3D printing, and have detected the
Majorana-like topological acoustic bound state at a fre-
quency closely matching our simulations. This constitutes

FIG. 3. Response spectra jPðΩÞj within the band gap of the topological n ¼ 1 vortex cluster (δR=d ¼ 0.15) with defect areas
introduced (a) at the vortex core and (b) slightly away from it. The defects perturb the vortex by making δR ¼ 0 inside the dashed circles.
The different datasets to the left of each panel correspond to an increasing normalized radius RD=d ¼ m of the circular defect area, while
the spatial map to the right shows in red the mode profile of state P1, which is found to remain pinned at the Dirac frequency ΩD ¼ 0.88
for all defects.

Frequency (kHz)

P
 (

a.
u.

)

(a)

(b)

(c)

Microphone

Speaker

P

S

FIG. 4. (a) Photograph of the 3D printed Kekulé distorted
sonic lattice, with parameters n ¼ 1, d ¼ 9 mm, R0 ¼ 0.35d,
δR ¼ 0.15d, ξ ¼ 2a, and a ¼ ffiffiffi

3
p

d. (b) A rigid lid was mounted
above the cluster into which holes were drilled to fasten the
speaker and the microphone. (c) The spectrally measured
pressure at point P (black) is compared to both inviscid (red)
and viscid (blue) numerical computations in near proximity to the
edge of the band gap.
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the first direct evidence of a topological bound acoustic
state. Beyond its fundamental significance, it is expected to
inspire new routes towards the engineering of topologically
protected sonic states, their manipulation, and transmission.

J. C. acknowledges support from the European Research
Council (ERC) through the Starting Grant No. 714577
PHONOMETA and from the MINECO through a Ramón y
Cajal grant (No. RYC-2015-17156). J. S.-D. acknowledges
support from the Ministerio de Economía y Competitividad
of the Spanish Government and the European Union
“Fondo Europeo de Desarrollo Regional (FEDER)”
through Project No. TEC2014-53088-C3-1-R. P. S.-J.
acknowledges support from MINECO/FEDER under
Grant No. FIS2015-65706-P. D. T. acknowledges financial
support through the Ramón y Cajal fellowship under Grant
No. RYC-2016-21188 and to the Ministry of Science,
Innovation and Universities through Project No. RTI2018-
093921-A-C42.

*Corresponding author.
pablo.sanjose@csic.es

†Corresponding author.
johan.christensen@uc3m.es

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] S. R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137 (2015).
[3] R. Aguado, Riv. Nuovo Cimento 40, 523 (2017).
[4] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J.

Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr,
M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A.
Wallraff, I. Walmsley, and F. K. Wilhelm, New J. Phys. 20,
080201 (2018).

[5] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[6] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[7] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-

Rouhani, Phys. Rev. Lett. 71, 2022 (1993).

[8] R. Martinez-Sala, J. Sancho, J. V. Sanchez, V. Gomez,
J. Llinares, and F. Meseguer, Nature (London) 378, 241
(1995).

[9] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B.
Zhang, Phys. Rev. Lett. 114, 114301 (2015).

[10] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P.
Liu, and Y.-F. Chen, Nat. Phys. 12, 1124 (2016).

[11] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu,
Nat. Phys. 13, 369 (2017).

[12] Y. Deng, H. Ge, Y. Tian, M. Lu, and Y. Jing, Phys. Rev. B
96, 184305 (2017).

[13] M. Wang, L. Ye, J. Christensen, and Z. Liu, Phys. Rev. Lett.
120, 246601 (2018).

[14] Z. Zhang, Y. Tian, Y. Cheng, Q. Wei, X. Liu, and J.
Christensen, Phys. Rev. Applied 9, 034032 (2018).

[15] X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, and J. Christensen,
Commun. Phys. 1, 97 (2018).

[16] R. Jackiw and P. Rossi, Nucl. Phys. B190, 681 (1981).
[17] J. D. Shore, M. Huang, A. T. Dorsey, and J. P. Sethna, Phys.

Rev. Lett. 62, 3089 (1989).
[18] F. Gygi and M. Schluter, Phys. Rev. B 41, 822 (1990).
[19] D. Torrent and J. Sánchez-Dehesa, Phys. Rev. Lett. 108,

174301 (2012).
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