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Camino de vera s.n. (Building 7 F), ES-46022 Valencia, Spain
2Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, People’s Republic of China

(Received 16 August 2017; revised 28 October 2017; accepted 2 November 2017; published online
22 November 2017)

The impedance matrix method is applied to study the scattering of flexural waves propagating in an

infinite thin plate containing an N-beam resonator. The resonator consists of a circular hole contain-

ing a smaller plate connected to the background plate by a number N of rectangular beams. After rep-

resenting the boundary conditions in a modal multipole expansion form, a compact expression is

obtained for the T-matrix, which relates the incident and the scattered transverse (out-of-plane)

waves. The analysis of the scattering cross-section reveals interesting scattering features, like reso-

nances and anisotropy, associated to this type of resonators. Numerical experiments performed within

the framework of the finite element method support the accuracy of the model here developed.
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I. INTRODUCTION

The propagation of waves in periodically structured

plates is currently a topic of increasing interest due to their

potential applications for vibration control. The reader is

referred to recent reviews1,2 and references therein for a

comprehensive report on this topic. When the plate is thin

enough, the wavelength is much larger than the plate’s

thickness and, consequently, the lower order transversely

polarized plate wave modes dominate. Particularly, the first

order asymmetric Lamb mode is termed as flexural wave,

and it is governed by a biharmonic equation based on

Kirchhoff�Love plate theory.3 One advantage of these par-

ticular waves is that the deformation of a plate can be easily

obtained by optical measurement systems, which facilitates

the experimental validation of the devices based on them.

Many works have been reported for flexural waves concern-

ing band gaps,4–6 negative refraction and focusing,7–9 cloak-

ing,10–12 gradient index lenses,13,14 and homogenization.15

The bandgaps obtained from the Bragg scattering by

periodically arranged scatterers in plates appear in frequency

region where the wavelength is comparable to the lattice

constant. For this reason, they can hardly be used in practice

because of the unfeasible dimensions of the samples to be

manufactured if one wants to get low frequency bandgaps.

To overcome this difficulty, flexural bandgaps at extremely

low frequencies can be obtained by designing periodic struc-

tures with embedded resonant structures, imitating the semi-

nal idea introduced by Liu et al.16 in acoustics. The resulting

periodic systems, composed of local resonators, are some-

times named as platonic4 or elastic metamaterials.17 In the

range of working frequencies, the wavelength is much larger

than the lattice constant, hence metamaterials are often char-

acterized by frequency related effective parameters just like

they were homogeneous.15,18 Subsequently, various kinds of

negative index metamaterials were proposed and designed

by means of local resonance mechanism, which paves the

way to some intriguing phenomena, like negative refraction

and perfect lensing.17

For flexural waves, the local resonances are usually

produced by spring-mass like resonators vibrating in trans-

verse (out-of-plane) direction, such as spring-masses,19 pil-

lars,20–23 and holes with inner structures.24,25 Among these

works, finite element method was widely used on account of

the complexity of resonant structures, and only few works

concerning spring-mass resonators were carried out by ana-

lytical methods like the plane wave expansion method.19 For

a comprehensive report, the reader is addressed to the review

article by Zhu and co-workers.17

This work presents an analytical formulation for the

scattering of flexural waves from a single structured circular

hole consisting of a circular plate that is connected to the

background plate with N rectangular beams. These types of

resonators, which are called N-beam resonators, have already

been employed to predict directional wave motion24 and

superlensing.25 There are two main reasons justifying the

study of these resonators. On one hand, they are easily man-

ufactured by using laser or waterjet cutting machines. On the

other hand, the resonators can be modeled analytically by

coupling the Kirchhoff�Love and the Euler�Bernoulli theo-

ries as shown below. Particularly, the model developed here

is an extension of the impedance matrix method previously

used in solving the scattering of flexural waves from a hole

with an internal beam.26 In this paper, a similar procedure is

followed to get the transfer matrix (T-matrix) of the complex

resonator under study, which lays a foundation on analysing

metamaterials with multiple scattering theory.
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The paper is organized as follows. After this introduc-

tion, Sec. II gives the detailed procedures for obtaining the

T-matrix with impedance matrix method. In Sec. III, several

numerical simulations are shown to validate the present the-

ory and to illuminate some complex scattering characteris-

tics, like resonance and anisotropy. Finally, the work is

summarized in Sec. IV, which also gives an outlook of

potential applications of the model introduced here.

II. SCATTERING OF FLEXURAL WAVES FROM AN
N-BEAM RESONATOR

A. Problem definition

Figure 1 shows two examples of the N-beam resonators

under study. The case N ¼ 1, the single beam resonator, is

depicted in Fig. 1(a), which shows a hole containing a disk or

inner plate (region I) connected to the background plate

(region II) by just one beam. Figure 1(b) corresponds to

N ¼ 6, representing the case with the maximum number of

beams for which numerical results are reported here. The

beams, which are rectangular with length R2 � R1 and width

b, are uniformly distributed inside the hole. However, let us

remark that the developed theory applies to a general case

with arbitrary angles. Anchor points are named for the nth

beam as Wn;1 for region I and Wn;2 for region II. For conve-

nience, the origins of the Cartesian coordinates O-xy and

polar coordinates O–rh are placed at the center of region I.

Each beam is described in a local system Oxn, which is

defined along the nth beam’s axis and pointing the r-direc-

tion, as shown in Fig. 1(b). It is assumed that the resonant

scatterer is fabricated by a waterjet cutting machine and all

parts are made of the same material as the background plate

with density q and rigidity D ¼ Eh3=12ð1� �2Þ, where E
and � are the Young’s modulus and Poisson’s ratio, respec-

tively. Moreover, h is the thickness of the plate.

According to plate theory, if h is thin enough the flex-

ural (transverse) waves, W, can be obtained by solving

Kirchhoff�Love biharmonic equation:3

r4W � k4
pW ¼ 0; (1)

where kp ¼ ðqhx2=DÞ1=4
is the wave number with x being

the angular frequency. The time harmonic factor e�ixt is

implicit in all the formulation but will be omitted throughout

the paper for simplicity. In polar coordinates, the solutions

for the inner plate (WI) and background plate (WII) can be

expressed as27

WIðr; hÞ ¼
X1

q¼�1
CðJÞq JqðkprÞ þ CðIÞq IqðkprÞ
h i

eiqh; (2)

WIIðr;hÞ¼WincþWscat¼
X1

q¼�1
AðJÞq JqðkprÞþAðIÞq IqðkprÞ
h

þBðHÞq HqðkprÞþBðKÞq KqðkprÞ
i
eiqh; (3)

where Jqð�Þ is the Bessel function, Hqð�Þ is the Hankel func-

tion of first kind, and Iqð�Þ; Kqð�Þ are the modified Bessel

functions. A
ð�Þ
q ; B

ð�Þ
q ; and C

ð�Þ
q represent the expansion coeffi-

cients for incoming wave, scattered wave and internal wave,

respectively. For the numerical simulations, the summations

run from �Nq to Nq, the value Nq giving the adequate trunca-

tion of the series is determined for each resonator and mainly

depends on the resonator dimension and the wavelength (see

Sec. III A).

B. Wave solution within the beams and boundary
conditions

The transverse (out-of-plane) displacement inside the

nth beam, VnðxnÞ, can be obtained by solving the well known

Euler–Bernoulli equation of motion3

@4Vn

@x4
n

� k4
bVn ¼ 0; (4)

where the beam is defined for xn 2 ½R1;R2� with an inclina-

tion angle of hn. The wave number in the beam is kb

¼ ðmx2=EIÞ1=4
, where I ¼ bh3=12 is the second moment of

area and m ¼ qbh is the mass per unit length. The solution

can be expressed as3

VnðxnÞ¼Dn
1eþikbxnþDn

2e�ikbxnþDn
3eþkbxnþDn

4e�kbxn ; (5)

where Dn
1 and Dn

2 are the coefficients of the forward and

backward traveling waves, respectively. Moreover, Dn
3 and

Dn
4 are the coefficients for the corresponding evanescent

waves within the beam.

The interaction between waves propagating in the

beams with those propagating within plates I and II is

embodied through the boundary conditions. It is clear that

the radial moment Mr and radial Kirchhoff stress Vr are van-

ishing for a free hole, but for the problem here considered,

some additional conditions should be introduced at the

anchor points. A detailed account of the basic formulation

describing the connection between beam and plate can be

found in Ref. 26. Obviously, the displacement, the slope, the

moment, and shear stress, all of them should be continuous

at both anchor points for the nth beam. The mathematical

expressions for these boundary conditions are

FIG. 1. (Color online) (a) Schematic diagram of a hole resonator consisting

of a circular disk (region I) connected to the background plate (region II) by

a single rectangular beam. (b) The case of a resonator connected with six

beams, where hn defines the inclination angle of the nth beam. In both cases,

the radii of hole and disk are R2 and R1, respectively. The width of all the

beams is b and the anchor points at the nth beam are Wn;1 and Wn;2.
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WIðR1; hnÞ ¼ VnðR1Þ and WIIðR2; hnÞ ¼ VnðR2Þ;
(6a)

@WI

@r

����r¼R1

h¼hn

¼@Vn

@xn

����
xn¼R1

and
@WII

@r

����r¼R2

h¼hn

¼@Vn

@xn

����
xn¼R2

;

(6b)

MI
r

����r¼ R1

h¼ hn

¼Mn
x

R1

����
xn¼R1

and MII
r

����r¼ R2

h¼ hn

¼Mn
x

R2

����
xn¼R2

; (6c)

VI
r

����r¼ R1

h¼ hn

¼Qn
x

R1

����
xn¼R1

and VII
r

����r¼ R2

h¼ hn

¼Qn
x

R2

����
xn¼R2

: (6d)

In these formulas, Mn
x and Qn

x are the bending moment and

the transverse shear force, respectively.

C. T-matrix solution

The transfer matrix or T-matrix is the key ingredient in

order to solve any scattering problem and it allows obtaining

the scattered field for any type of incident wave. The T-

matrix relates the incoming and scattered wave coefficients

through the relationship

B ¼ TA; (7)

where A and B are column vectors containing the incoming

and scattered wave coefficients of Eq. (3). Their elements are

Aq ¼ ½AðJÞq A
ðIÞ
q �t and Bq ¼ ½BðHÞq B

ðKÞ
q �t, respectively. Therefore,

the T is a square matrix that for numerical calculations has

dimension 2ð2Nq þ 1Þ � 2ð2Nq þ 1Þ.
By applying the impedance method for flexural waves,26

the T-matrix of the N-beam resonator can be cast in

T ¼ MHKðkp;R2Þ
� ��1

Zscat þ Ztot½ ��1
Zinc � Ztot½ �

� MJIðkp;R2Þ
� �

; (8)

where the matrices Zinc; Zscat; and Ztot are evaluated at the

boundary r¼R2. They represent the impedance matrices

associated to the incident (Zinc), scattered (Zscat), and total

(Ztot) flexural waves propagating in region II. Their expres-

sions are given in Appendixes A and B, which also contain

an explanation of their derivation.

Once the T is determined, coefficients B
ð�Þ
q are obtained

from

B
ðHÞ
q

B
ðKÞ
q

2
4

3
5 ¼ X1

s¼�1
Tqs

A
ðJÞ
s

A
ðIÞ
s

" #
; (9)

which fully determines WII, the waves propagating in region

II, since coefficients A
ð�Þ
q defining the incident wave are

known. For the cases considered here, an incident plane

wave and a punctual source, the expressions for A
ð�Þ
q can be

found elsewhere.26

Now, the coefficients C
ð�Þ
q , determining the flexural

waves propagating in the inner plate, WI, are obtained with

further mathematical operations. The combination of Eqs.

(6a), (6b), (C4), (B2), (B3), and (B8) yields

X1
s¼�1

L̂qs
C
ðJÞ
s

C
ðIÞ
s

" #
¼
X1

s¼�1
R̂qs

WII

WII
;r

" #
s

; (10)

with WII
;r � @WII=@r and where the 2� 2 sub-matrices L̂qs

and R̂qs are the elements of L̂ and R̂, respectively,

L̂qs ¼ 2pR1NJI
ssðkp;R1Þdqs�K11MJI

ssðkp;R1Þ
XN

m¼1

eiðs�qÞhm ;

(11)

R̂qs ¼ K12

XN

m¼1

eiðs�qÞhm : (12)

Finally, by solving the above equation we obtain the

coefficients in region I as

C
ðJÞ
q

C
ðIÞ
q

2
4

3
5 ¼ X1

s¼�1
T̂qs

WII

WII
;r

" #
s

; (13)

where the sub-matrix T̂qs is one element of the block matrix

T̂ ¼ L̂
�1

R̂.

Once the displacements in the background plate and

inner plate are known, according to Eqs. (6a) and (6b) the

coefficients determining the flexural waves in the nth beam

are easily available

Dn
1

Dn
2

Dn
3

Dn
4

2
666664

3
777775¼H�1

X1
q¼�1

0 0

MJI
qqðkp;R2Þ MHK

qq ðkp;R2Þ

" # A
ðJÞ
q

A
ðIÞ
q

B
ðHÞ
q

B
ðKÞ
q

2
66666664

3
77777775

�eiqhnþH�1
X1

q¼�1

MJI
qqðkp;R1Þ 0

0 0

" # C
ðJÞ
q

C
ðIÞ
q

0

0

2
6666664

3
7777775

eiqhn:

(14)

The expressions of these coefficients totally solve the scat-

tering problem proposed in Eqs. (2), (3), and (5).

III. RESULTS AND DISCUSSION

This section reports numerical simulations checking the

convergence and accuracy of the model introduced previously.

In this section, two physical magnitudes are studied. The first

one is the angle dependent scattering amplitude at the far
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field, f ðhÞ, which is related with the amplitude of the scattered

waves in region II28

limr!1Wsc ¼ 1ffiffiffiffiffi
2r
p ei kpr�p=4ð Þf hð Þ; (15)

where Wsc contains the last two terms in the expansion of

WII [see Eq. (3)].

Therefore, by using the asymptotic expression for

Hankel functions for large arguments,28

f hð Þ ¼ 2ffiffiffiffiffiffiffi
pkp

p X1
q¼�1

�ið ÞqB Hð Þ
q eiqh: (16)

Note that f ðhÞ is independent of radius and thus is used to

describe the scattering pattern. Particularly, when h¼ 0, it is

called as the forward scattering amplitude and its modulus

jf ð0Þj is here employed to analyze the convergence of our

approach.

The second magnitude of interest is the scattering cross-

section rsc, which is defined as the ratio of scattered flux to

the incident flux28

rsc ¼
1

2

ð2p

0

��f hð Þ
��2dh: (17)

This quantity is useful for analyzing the scattering properties

at the far field. According to the optical theorem for flexural

waves, rsc only depends on f(0),28

rsc¼�2

ffiffiffiffiffi
p
kp

r
Ref 0ð Þ¼� 4

kp

X1
q¼�1

Re �ið ÞqB Hð Þ
q

h i
: (18)

Numerical results are obtained by considering an infinite

plate made of aluminum (Young’s modulus E ¼ 69 GPa,

Poisson’s ratio � ¼ 0:33, and the density

q ¼ 2:7� 103 kg=m3). Other parameters described in Fig. 1

are R1 ¼ 5 mm; R2 ¼ 10 mm, b ¼ 2 mm and the plate thick-

ness (not shown) is h ¼ 1 mm. These parameters have been

taken from Ref. 24 studying a square lattice of 2-beam reso-

nators and are employed here for comparison purposes.

A. Convergence analysis

Figure 2 shows the study of convergence for the case

of a 2-beam resonator. The modulus of the forward scatter-

ing amplitude at the far field, jf ð0Þj, is calculated as a func-

tion of the frequency (in normalized units) for five different

values of Nq, the integer number defining the truncation of

the series expansion in Eq. (16). As expected, it is observed

that, for larger frequencies, the convergence is achieved

with more summation terms. Therefore, from Fig. 2 it is

concluded that for Nq¼ 12 the series summation converges

fairly well if the normalized frequency is smaller than 3;

that is, when the size of the resonator is smaller than 1:5k,

where k is the wavelength inside the uniform plate. For

higher frequencies, a better accuracy is reached at the cost

of larger computing time. For example, the CPU time (run-

ning in an Intel Core i7-6700K @4.00 GHz machine with

64 GB of RAM) needed to calculate a single point in Fig. 2

increases in a factor of 1.2 when we change from Nq¼ 12

to Nq¼ 20. Therefore, a compromise has to be made

between accuracy and computing time mainly if one wants

to solve structures containing a large number of resonators.

For the frequency range explored in this work (up to 5

reduced units), Nq¼ 18 is a good choice and will be used in

the following calculations.

B. Finite element simulations

A commercial finite element package (COMSOL

Multiphysics) is employed here to study numerically the

behavior of two different N-beam resonators. The results are

compared with those obtained with the model here developed.

Using the solid mechanics module, the full elastic equations

in three-dimensions (3D) are solved, so that both the in-plane

and out-of-plane motions are involved in the displacement

field. Under the action of a harmonic excitation perpendicu-

larly applied to the thin plate, the transverse (out-of-plane)

component of the displacement dominates and it can be

regarded as the flexural wave motion in our model. In the sim-

ulations, the punctual source is located at (�2, 2), where the

Cartesian coordinates are normalized to R2.

Figure 3 shows snapshots of the out-of-plane displace-

ments obtained from the exact 3D finite element simulator

(left panels) and the analytical simulations (right panels)

when a 2-beam resonator is placed at the plate center. Results

in Figs. 3(a) and 3(b) are obtained by exciting the system

with a punctual source with a wavenumber such that kpR2

¼ 2p. Their comparison indicates that the displacement pat-

terns are practically the same, showing that the scattering pat-

tern obtained by the 3D solver is perfectly reproduced by our

analytical 2D model. However, the situation is slightly differ-

ent for Figs. 3(c) and 3(d), which are calculated with an exci-

tation having kpR2 ¼ 5p. For this case, even though they

show similar scattering patterns, appreciable differences are

observed. The origin of the discrepancy is attributed to the

implicit limitations in the Kirchhoff–Love theory employed

in our modeling. When kpR2 ¼ 5p, the wavelength is only

four times the thickness of the plate and, therefore, the plate

is not thin enough to be treated as a Kirchhoff plate.

FIG. 2. (Color online) Convergence study for the case of a 2-beam resona-

tor. The modulus of the forward scattering amplitude, jf ð0Þj, is plotted as a

function of the normalized frequency, kpR2=p, for five different values of

Nq, the integer defining the series truncation.

3208 J. Acoust. Soc. Am. 142 (5), November 2017 Climente et al.



In a similar way, Fig. 4 displays the displacement snap-

shots for a 6-beam resonator. The conclusions are equivalent

to the previous case; when k � 4 h, the biharmonic equation

is not a good model representing the flexural waves propa-

gating in a plate. From these numerical experiments, we can

conclude that the developed theory works well for resonators

with arbitrary number of beams provided that the plate is

thin enough to meet Kirchhoff’s assumptions.

C. Scattering properties of N-beam resonators

Compared with an empty hole, the resonant structures

under study are expected to show more complex scattering

features. These particular features are thoroughly illustrated

in this section via the scattering cross-section introduced in

Eq. (18), which is calculated by considering a plane wave

propagating along the positive x axis, W ¼ eikpx, interacting

with the N-beam resonator. The cases of 1-beam and 2-beam

resonators are studied with some details in what follows.

First, the results for the single beam resonator are

depicted in Fig. 5, which shows the dependence of rsc on the

normalized frequency kpR2=p. Results in Fig. 5(a) correspond

to the beam orientated along the positive direction of the x
axis (i.e., h1 ¼ 0 in Fig. 1). Correspondingly, Figs. 5(b) and

5(c) represent the orientations h1 ¼ p/2 and h1 ¼ p, respec-

tively. For comparison purpose, the dashed lines in both fig-

ures represent the results obtained for an empty hole with the

same diameter. It is observed that the curves for the three ori-

entations are nearly overlapping with the dashed lines except

some sharp peaks appearing at low frequencies. Particularly,

the first two peaks in all the figures appear at the same fre-

quencies and are much stronger than the others. In order to

understand the physical origin of these peaks, Fig. 5 also

FIG. 4. (Color online) Snapshots of the out-of-plane displacements obtained

when a cylindrical wave is scattered by a 6-beam resonator. The punctual

source is placed at (�2, 2) and the excitation wavenumbers are kpR2 ¼ 2p
and kpR2 ¼ 5p for the upper and lower panels, respectively. Left panels cor-

respond to 3D finite element simulations and right panels correspond to the

analytical 2D model here introduced.

FIG. 3. (Color online) Snapshots of the out-of-plane displacements obtained

when a cylindrical wave is scattered by a 2-beam resonator. The punctual

source is placed at (�2, 2) and the excitation wavenumbers are kpR2 ¼ 2p
and kpR2 ¼ 5p for the upper and lower panels, respectively. Left panels cor-

respond to 3D finite element simulations and right panels correspond to the

analytical 2D model here introduced.

FIG. 5. (Color online) Frequency dependence of the scattering cross-section

(in meters) of a single beam resonator, which is placed along the positive x
axis (a), perpendicularly to it (b) and opposite to it (c). The frequencies are

given in normalized units, kpR2=p. Results are calculated for an empty hole

with the size of the outer radius R2 are given for comparison purposes. The

blue thin lines represent the bending moments at the anchor points con-

nected to the background plate. The insets show the alignment of the beam

with respect to the incident wave, which propagates along the positive direc-

tion of the x axis.
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contains the bending moment M1
xðR2Þ calculated at the

anchor point W1;2 (continuous blue lines). Clearly, the peaks

of rsc appear when the value of the bending moment experi-

ences a strong variation, indicating the excitation of a reso-

nant mode in the inner plate. In other words, the large values

of rsc at the two frequencies are directly caused by the large

(out-of-plane) displacements of the inner plate, their charac-

teristics are described below.

Figure 6 shows the corresponding results for a 2-beam

resonator. Since the scattering process is controlled by the

combined action of beams, it is expected that an increasing

number of beams will produce a rather complex behavior

in rsc. However, for the case of two beams the scattering

properties of the resonator can be still understood in an intui-

tive manner. For example, results in Fig. 6(a), corresponding

to the beams aligned along the x axis, show that the bending

moments at the two anchor points (W1;2 and W2;2) are not

excited in phase. Consequently, the peaks of rsc are weak-

ened and their frequency positions cannot be related with the

behavior of the bending moments. The fact that the two

beams are not oscillating in phase produces a frequency

behavior on the cross-section closely similar to that of the

empty hole.

However, when the beams are perpendicular to the x
axis, the two anchor points are excited in phase with the

wavefront, the bending moments are degenerated and rsc

shows many strong peaks. Like for the two peaks analyzed

in Figs. 5(a)–5(c), the bending moments in Fig. 6(b) experi-

ence a rapid variation of their values for the two strongest

peaks observed for rsc. Again, this feature indicates the exci-

tation of resonant modes inside the inner plate. To prove

this, Fig. 7 shows two-dimensional patterns of the displace-

ment amplitudes obtained at the first and second peaks in

Figs. 5 and 6. Apparently, the patterns corresponding to the

first peak [see Figs. 7(a)–7(d)]. demonstrate that the dis-

placement of the inner plate is much larger than the back-

ground plate. In fact, it is shown that the inner disk deforms

as a whole in the out-of-plane direction just like the mass in

a spring-mass resonator. This movement can be considered

as the fundamental resonance of the N-beam resonator.

From Figs. 5 and 6(b) it is observed that the first

peak experiences a blue shift when a beam is added to the

resonator. This behavior is predictable by analogy to a simple

spring-mass oscillator whose effective stiffness increases with

the number of beams. In reduced units, the frequency goes

from 0.2404 to 0.5043, corresponding to 1407 and 6175 Hz,

respectively. The value of the last frequency is in agreement

with 6.1 kHz, the frequency of resonant band associated to the

fundamental mode reported in Ref. 24, which studied square

arrays of 2-beam resonators using the Mindlin plate theory.

For resonators with larger number of beams the excitation of

the fundamental mode is impossible because its frequency is

expected to be higher. Therefore, the beams cannot be excited

in phase by an incident wave with wavelength comparable or

even smaller than the size of the resonator. Quite differently,

for the second peak, the 2D patterns in Figs. 7(e)–7(h) show

that nodal lines appear inside the inner plate. Like in the case

FIG. 6. (Color online) Frequency dependence of rsc (in meters) for the 2-

beam resonator, which is placed with both beams orientated along the x axis

(a) and perpendicularly to it (b). The frequencies are given in normalized

units, kpR2=p. The solid and dashed blue lines represent the bending

moments at the two anchor points W1;2 and W2;2, respectively. They are

degenerated in case (b). The results for an empty hole with the size of the

outer radius R2 are given for comparison purposes. The insets show the

alignment of the beams with respect to the incident wave, which propagates

along positive direction of the x axis.

FIG. 7. (Color online) Upper panels:

Two-dimensional maps of the out-of-

plane displacement amplitude obtained

at the frequency of the fundamental

resonance of the 1-beam resonator [(a)

to (c) and 2-beam resonator (d). Lower

panels: The corresponding maps

obtained at the frequency of the second

resonance for the 1-beam [(e) to (g)

and 2-beam (h) resonators. These

modes are responsible for the first and

second peaks appearing in Fig. 5 and

Fig. 6(b), respectively.
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of resonances of a circular diaphragm with clamped boundary

conditions tabulated by Leissa,27 the resonances inside our N-

beam resonator can be also classified according to the number

of nodal lines. Thus, the single nodal line observed in the

inner plate for Figs. 7(e)–7(g) indicates the excitation of the

same resonance. The two nodal lines shown in Fig. 7(h)

denote the excitation of a resonant mode with higher order.

The excitation of low frequency resonances is the ori-

gin of many interesting phenomena in flexural wave propa-

gation. For example, the single beam resonator studied

in this work has been employed to propose elastic metama-

terials with dispersive effective density.25 It is worth men-

tioning that the negative density is closely related with

the rapid variation of bending moment at the resonance

frequency.

In contrast with a free circular hole, the scatterers under

study do not possess radial symmetry, they are inherently

anisotropic and have resonant modes at wavelengths larger

than their geometrical dimensions (low frequencies). Therefore,

it is expected a frequency dependence of their directional scat-

tering properties, which can be applied to propose devices for

wave directionality and to design elastic metamaterials with

low-frequency bandgaps.24

The scattering properties of N-beam resonators, contain-

ing up to six beams, are reported in Fig. 8, which shows

the angular dependence of the normalized scattering cross-

section, rsc=rhole
sc , with rhole

sc being the cross-section of the

empty hole (black dotted lines) with the same size. The results

are obtained by considering a plane wave propagating along

the positive x axis. In each plot, the polar angle represents the

tilt angle of one particular beam hn, and the rest of the beams

are uniformly distributed inside the hole, as illustrated in

Fig. 1(b). For the sake of their comparison, calculations have

been performed for three different frequencies: kpR2 ¼ 0:24p
(red dashed-dotted lines), kpR2 ¼ 0:5p (blue dashed lines),

and kpR2 ¼ 2p (green lines). The first two frequencies corre-

spond to the fundamental modes shown in Figs. 5 and 6, with

wavelengths k ¼ 8.3R2 and 4R2, respectively.

For the largest wavelength studied (red dot-dashed lines),

Fig. 8(a) shows that rsc is extremely large in comparison

with rhole
sc since it corresponds to the frequency of the funda-

mental mode of the 1-beam resonator. In addition, it is

observed that rsc is almost isotropic since the mode can be

excited independently of the direction of the incident wave as

it is shown in Fig. 5. However, for the 2-beam and 4-beam

resonators [see Figs. 8(b) and 8(d), respectively], rsc has a

strong anisotropic character which is attributed to the fact

that the beams are excited in couples, as it is shown in Fig. 6

for the 2-beam resonator. In other words, when the beams are

symmetrically placed with respect to the incident direction

(the x axis), strong scattering occurs owing to the in phase

vibration for couples of the beams. For the 4-beam resonator

this happens at four orientations; at 45	 and its multiples. For

the other resonators, the beams are oscillating out-of-phase,

producing an isotropic angular pattern with values of rsc

being larger or lower than rhole
sc .

For intermediate wavelengths (blue dashed lines), the

scattering by the 2- and 4-beam resonators keeps their

anisotropic character for the reason explained above. But

now the rsc value for the 2-beam case is about six times

larger than rhole
sc because the frequency exactly corresponds

to its fundamental mode [see Fig. 6(b)]. For the 1-beam res-

onator case, rsc 
 rhole
sc and is isotropic since there is no

peak at this frequency (see Fig. 5). The other resonators

exhibit an isotropic behavior and have rsc values always

smaller than rhole
sc , decreasing with the number of beams.

This behavior can be understood if one considers that more

beams mean more propagating channels for the incident

flexural waves.

Finally, for wavelengths comparable with the resonator

size and below, like k ¼ R2 (green lines), rsc is strongly

anisotropic for all the resonators except for the case of

1-beam, which has rsc values practically independent of the

beam orientation (see Fig. 5). Thus, for high frequencies the

inherent anisotropy of the scattering object is reflected in its

angular dependence of rsc.

FIG. 8. (Color online) Polar plots

depicting the angular variation of the

normalized scattering cross-section,

rsc=rhole
sc , from an N-beam resonator

with 1 - (a), 2 - (b), 3 - (c), 4 - (d), 5 -

(e), and 6 - (f) beams, respectively.

Results are shown for three different

frequencies, corresponding to wave-

lengths k ¼ 8.3R2 (red dot-dashed

lines), 4R2 (blue dashed lines), and R2

(green lines). The circle with unity

radius (black dotted lines) represents

rhole
sc , used as the reference. The calcu-

lations are performed by considering a

plane wave propagating along the posi-

tive x axis. In each plot, the polar angle

represents the tilt angle of one particu-

lar beam hn, and the rest of the beams

are uniformly distributed inside the

hole, as illustrated in Fig. 1(b).
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From the results above, special discussion deserves the

case for the 2-beam resonator [see Fig. 8(b)] that, for low

frequencies, displays a characteristic “figure eight” scatter-

ing pattern. This shape, indicating the angular dependence of

the scattering with respect to the orientation of the exciting

wave, can be employed in designing directional elastic meta-

materials consisting of a perforated plate with a periodic dis-

tributions of them, as has been proven in Ref. 24.

IV. SUMMARY

In summary, the scattering of flexural waves from a

hole containing an N-beam resonator has been solved ana-

lytically by using the impedance matrix method for flexural

waves. The model has been developed within the framework

of the Kirchhoff–Love theory applied to thin plates. The

expression for the transfer matrix (T-matrix) has been given

as a function of the impedance matrices for the incident

(Zinc), scattered (Zscat) and total (Ztot) waves. For frequen-

cies low enough, numerical results indicate that the trans-

verse (out-of-plane) displacements are in agreement with

3D finite element simulations. Regarding resonant frequen-

cies, the value obtained by our model for the 2-beam resona-

tors reproduces fairly well the one obtained by the 2D

model formulated using Mindlin plate elements.24 It has

been also determined the truncation of the series expression

when dealing with impinging waves having high frequency.

Since the resonators are inherently anisotropic, they exhibit

complex scattering characteristics, like directionality and

resonances at low frequencies, which are revealed by study-

ing the scattering cross-section. Of particular interest is the

case of 2-beam resonator, which exhibits a characteristic

figure eight scattering pattern at low frequencies. This theo-

retical work opens the door to tackle a variety of problems

within the field of elastic metamaterials based on perforated

plates containing periodic distributions of N-beam resona-

tors. The development of a homogenization theory for this

type of metamaterials and the demonstration of negative

refraction based on them are the goals of further works to be

published elsewhere.
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APPENDIX A: IMPEDANCE MATRICES IN REGION II:
Zinc AND Zscat

The incident and scattered impedance matrices in the

infinite plate are defined by

MII
r

VII
r

" #inc

q

¼
X1

s¼�1
�Zinc

qs

WII

WII
;r

" #inc

s

; (A1)

MII
r

VII
r

" #scat

q

¼
X1

s¼�1
Zscat

qs

WII

WII
;r

" #scat

s

: (A2)

Based on these definitions, the two matrices can be

expressed as

Zinc
qq ¼ �NJI

qqðkp;R2Þ MJI
qqðkp;R2Þ

h i�1

; (A3)

Zscat
qq ¼ NHK

qq ðkp;R2Þ MHK
qq ðkp;R2Þ

h i�1

; (A4)

where the additional matrices appearing in the above equa-

tions are defined as

M!U
qq ðki; rÞ ¼

!qðkirÞ UqðkirÞ
ki!0qðkirÞ kiU0qðkirÞ

" #
; (A5)

N!U
qq ðki; rÞ ¼

S!
q ðkirÞ SU

q ðkirÞ

T!
q ðkirÞ TU

q ðkirÞ

2
4

3
5; (A6)

where S and T represent complex expressions involving

combinations of Bessel functions. Their explicit expressions

are available in Ref. 26.

APPENDIX B: IMPEDANCE MATRIX IN REGION II: Ztot

The impedance matrix for the total wave propagating in

the infinite plate is the key ingredient in the impedance method

MII
r

VII
r

2
4

3
5

inc

q

þ
MII

r

VII
r

2
4

3
5

scat

q

0
B@

1
CA

¼
X1

s¼�1
�Ztot

qs

WII

WII
;r

2
4

3
5

inc

s

þ
WII

WII
;r

2
4

3
5

scat

s

0
B@

1
CA: (B1)

This matrix is the key ingredient in the impedance method

developed in Sec. II. It is obtained by applying the modal

expansion method in cylindrical coordinates to the boundary

conditions.

At the inner boundary r¼R1, for every h we can define

WI

WI
;r

" #
q

¼ MJI
qqðkp;R1Þ

C
ðJÞ
q

C
ðIÞ
q

2
4

3
5; (B2)

with WI
;r � @WI=@r,

MI
r

VI
r

" #
q

¼ NJI
qqðkp;R1Þ

C
ðJÞ
q

C
ðIÞ
q

2
4

3
5: (B3)

Finally, the relation between Eqs. (B2) and (B3) is

MI
r

VI
r

" #
q

¼ ðYI
qqÞ
�1

WI

WI
;r

" #
q

; (B4)
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with

YI
qq ¼ MJI

qqðkp;R1Þ NJI
qqðkp;R1Þ

h i�1

: (B5)

From the boundary conditions in Eqs. (6c) and (6d) (left col-

umn), we obtain that

MI
r R1; hð Þ ¼ 1

R1

XN

n¼1

Mn
x R1ð Þd h� hnð Þ; (B6)

VI
r R1; hð Þ ¼ 1

R1

XN

n¼1

Qn
x R1ð Þd h� hnð Þ: (B7)

Expanding the Dirac function in azimuthal orders dðh� hnÞ
¼ ð1=2pÞ

P
qeiqðh�hnÞ, after grouping we obtain

MI
r R1;hð Þ

VI
r R1;hð Þ

" #
¼
X1

q¼�1

MI
r

VI
r

" #
q

eiqh

¼
X1

q¼�1

XN

n¼1

e�iqhn

2pR1

Mn
x R1ð Þ

Qn
x R1ð Þ

" # !
eiqh: (B8)

Considering only the q-term of Eqs. (B4) and (B8), we have

WI

WI
;r

" #
q

¼ YI
qq

XN

n¼1

e�iqhn

2pR1

Mn
x R1ð Þ

Qn
x R1ð Þ

" # !
: (B9)

From the boundary conditions in Eqs. (6a) and (6b) (left

column), the vertical displacement and slope of the mth

beam can be expressed as function of bending moment and

shear force

Vm
x R1ð Þ

Vm
;x R1ð Þ

" #
¼
X1

q¼�1

XN

n¼1

YI
qq

eiq hm�hnð Þ

2pR1

Mn
x R1ð Þ

Qn
x R1ð Þ

" #
: (B10)

Notice that Kij are not dependent on n. Rewritten Eq. (C4) to

fit the need of Eq. (B10) as

Vn
x ðR1Þ

Vn
;xðR1Þ

" #
¼ K�1

21

Mn
xðR2Þ

Qn
xðR2Þ

" #
� K�1

21 K22

Vn
x ðR2Þ

Vn
;xðR2Þ

" #
;

(B11)

Mn
xðR1Þ

Qn
xðR1Þ

" #
¼K11K�1

21

Mn
xðR2Þ

Qn
xðR2Þ

" #

þðK12�K11K�1
21 K22Þ

Vn
x ðR2Þ

Vn
;xðR2Þ

" #
; (B12)

and casting them into Eq. (B10), we obtain the following

equation after some manipulations:

XN

n¼1

Lmn

Mn
xðR2Þ

Qn
xðR2Þ

" #
¼
XN

n¼1

Rmn

Vn
x ðR2Þ

Vn
;xðR2Þ

" #
: (B13)

The following notations have been used to simplify the

equation:

Lmn ¼ dmnK�1
21 � YI

mnK11K�1
21 ; (B14a)

Rmn ¼ dmnK�1
21 K22 þ YI

mnðK12 � K11K�1
21 K22Þ; (B14b)

YI
mn ¼

1

2pR1

X1
q¼�1

YI
qqeiq hm�hnð Þ; (B14c)

where the sub-matrices Lmn and Rmn are the elements of

block matrices L and R, respectively. dmn is the delta func-

tion in matrix form and indices m; n 2 ½1;N�. Solving the lin-

ear system of equations in Eq. (B13), we obtain

Mm
x ðR2Þ

Qm
x ðR2Þ

" #
¼
XN

n¼1

Zmn

Vn
x ðR2Þ

Vn
;xðR2Þ

" #
; (B15)

where Zmn is the element of auxiliary impedance matrix

Z ¼ L�1R
As have been done in Eqs. (B6)�(B8), the boundary

conditions in Eqs. (6c) and (6d) (right column) are expanded

in azimuthal orders

MII
r R2; hð Þ

VII
r R2; hð Þ

" #tot

¼
X1

q¼�1

MII
r

VII
r

" #tot

q

eiqh

¼
X1

q¼�1

XN

m¼1

e�iqhm

2pR2

Mm
x R2ð Þ

Qm
x R2ð Þ

" # !
eiqh:

(B16)

Taking into account the q-term only and we obtain the fol-

lowing relationship after substituting Eq. (B15) into it:

MII
r

VII
r

" #tot

q

¼
XN

m¼1

XN

n¼1

e�iqhm

2pR2

Zmn

Vn
x R2ð Þ

Vn
;x R2ð Þ

" #
: (B17)

Considering the boundary conditions in Eqs. (6a) and (6b)

(right column),

Vn
x ðR2Þ

Vn
;xðR2Þ

" #
¼

WIIðR2; hnÞ
WII
;r ðR2; hnÞ

" #tot

¼
X1

s¼�1

WII

WII
;r

" #tot

s

eishn ;

(B18)

then

MII
r

VII
r

" #tot

q

¼
X1

s¼�1

XN

m¼1

XN

n¼1

ei shn�qhmð Þ

2pR2

Zmn

WII

WII
;r

" #tot

s

: (B19)

According to the definition in Eq. (B1), the 2� 2 blocks of

the impedance matrix for the total wave are expressed as

Ztot
qs ¼ �

XN

m¼1

XN

n¼1

ei shn�qhmð Þ

2pR2

Zmn: (B20)
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APPENDIX C: BEAM STIFFNESS MATRIX

The background plate and inner circular plate are connected by the N-beams, which behave like springs. This appendix

describes how to connect the bending moment and shear force to the displacement and slope at the anchor points by the stiff-

ness matrix.

Let us consider an arbitrary beam. After differentiating Eq. (5) multiple times with respect to coordinate xn, we obtain

(using a simplified notation that omits the indices n in the corresponding quantities)

VðxÞ
V0ðxÞ
V00ðxÞ
V000ðxÞ

2
66664

3
77775 ¼

ðikbÞ0eikbx ð�ikbÞ0e�ikbx ðkbÞ0ekbx ð�kbÞ0e�kbx

ðikbÞ1eikbx ð�ikbÞ1e�ikbx ðkbÞ1ekbx ð�kbÞ1e�kbx

ðikbÞ2eikbx ð�ikbÞ2e�ikbx ðkbÞ2ekbx ð�kbÞ2e�kbx

ðikbÞ3eikbx ð�ikbÞ3e�ikbx ðkbÞ3ekbx ð�kbÞ3e�kbx

2
66664

3
77775

D1

D2

D3

D4

2
664

3
775: (C1)

Evaluating this at the end points x¼R1 and x¼R2, after simplifying and ordering terms we have

VðR1Þ
V0ðR1Þ
VðR2Þ
V0ðR2Þ

2
66664

3
77775 ¼

eikbR1 e�ikbR1 ekbR1 e�kbR1

ikbeikbR1 �ikbe�ikbR1 kbekbR1 �kbe�kbR1

eikbR2 e�ikbR2 ekbR2 e�kbR2

ikbeikbR2 �ikbe�ikbR2 kbekbR2 �kbe�kbR2

2
66664

3
77775

D1

D2

D3

D4

2
664

3
775 ¼ H

D1

D2

D3

D4

2
664

3
775; (C2)

V00ðR1Þ
V000ðR1Þ
V00ðR2Þ
V000ðR2Þ

2
66664

3
77775 ¼ k2

b

�eikbR1 �e�ikbR1 ekbR1 e�kbR1

�ikbeikbR1 ikbe�ikbR1 kbekbR1 �kbe�kbR1

�eikbR2 �e�ikbR2 ekbR2 e�kbR2

�ikbeikbR2 ikbe�ikbR2 kbekbR2 �kbe�kbR2

2
66664

3
77775

D1

D2

D3

D4

2
664

3
775 ¼ k2

bHa

D1

D2

D3

D4

2
664

3
775; (C3)

where a ¼ diag(�1, �1, 1, 1) is a diagonal matrix. Combining the previous equations and after some tedious algebra opera-

tions, we obtain the following relation:

MxðR1Þ
QxðR1Þ
MxðR2Þ
QxðR2Þ

2
666664

3
777775 ¼ �EIk2

bHaH�1

VðR1Þ
V0ðR1Þ
VðR2Þ
V0ðR2Þ

2
666664

3
777775 ¼ K

VðR1Þ
V0ðR1Þ
VðR2Þ
V0ðR2Þ

2
666664

3
777775; (C4)

where the stiffness matrix is

K ¼ K11 K12

K21 K22

� �
¼ �EIk2

b

S

S10

S11

kb
S20

S21

kb

kbS12 �S10 kbS22 S20

S20 � S21

kb
S10 � S11

kb

�kbS22 S20 �kbS12 �S10

2
66666664

3
77777775
; (C5)

with notations

S ¼ �4eð1þiÞkbðR1þR2Þ þ ðe2ikbR1 þ e2ikbR2Þðe2kbR1 þ e2kbR2Þ; (C6)

S10 ¼ �i e2ð1þiÞkbR1 þ e2ð1þiÞkbR2 � e2kbðR1þiR2Þ � e2kbðR2þiR1Þ
� �

; (C7)

S11 ¼ ð1þ iÞ e2ð1þiÞkbR1 � e2ð1þiÞkbR2 � ie2kbðR1þiR2Þ þ ie2kbðR2þiR1Þ
� �

; (C8)

S12 ¼ ð1� iÞ e2ð1þiÞkbR1 � e2ð1þiÞkbR2 þ ie2kbðR1þiR2Þ � ie2kbðR2þiR1Þ
� �

; (C9)

S20 ¼ 4eð1þiÞkbðR1þR2Þfcos kbðR1 � R2Þ½ � � cosh kbðR1 � R2Þ½ �g; (C10)

S21 ¼ 4eð1þiÞkbðR1þR2Þfsin kbðR1 � R2Þ½ � � sinh kbðR1 � R2Þ½ �g; (C11)

S22 ¼ �4eð1þiÞkbðR1þR2Þf sin kbðR1 � R2Þ½ � þ sinh kbðR1 � R2Þ½ �g: (C12)
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