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Recently, the ray tracing method has been used to
derive the non-singular cylindrical invisibility cloaks
for out-of-plane shear waves, which is impossible
via the transformation method directly owing to the
singular push-forward mapping. In this paper, the
method is adopted to design a kind of non-singular
acoustic cloak. Based on Hamilton’s equations of
motion, eikonal equation and pre-designed ray
equations, we derive several constraint equations for
bulk modulus and density tensor. On the premise
that the perfect matching conditions are satisfied,
a series of non-singular physical profiles can be
obtained by arranging the singular terms reasonably.
The physical profiles derived by the ray tracing
method will degenerate to the transformation-based
solutions when taking the transport equation into
consideration. This illuminates the essence of the
newly designed cloaks that they are actually the
so-called eikonal cloaks that can accurately control
the paths of energy flux but with small disturbance
in energy distribution along the paths. The near-
perfect invisible performance has been demonstrated
by the numerical ray tracing results and the
pressure distribution snapshots. Finally, a kind of
reduced cloak is conceived, and the good invisible
performance has been measured quantitatively by the
normalized scattering width.

1. Introduction
It is interesting that the transformation method and
conformal mapping method were proposed by Pendry
et al. [1] and Leonhardt [2], respectively, almost at
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the same time to achieve the passive cloaking for electromagnetic waves. Owing to its
intuitive physical picture and simple mathematical operation, the transformation method
rapidly became the mainstream strategy for energy controlling to acoustic waves [3–7], linear
surface water waves [8,9], bending waves [10–14], out-of-plane shear waves [15,16] and
thermodynamics [17–19].

In the realm of elastodynamics, however, Milton et al. [20] demonstrated that Navier
equations are not form invariant under a general mapping and will be transformed to Willis
equations with a particular choice of gauge. Brun et al. [21] have designed a cylindrical cloak
with recourse to the Cosserat-type materials for achieving control of in-plane elastic waves. In
2011, Norris & Shuvalov [22] developed the transformation theory in a more general elasticity
framework and fuelled the interest in transformation elastodynamics. Nevertheless, the non-
symmetric constitutive relations introduced in the aforementioned studies pose real challenges
for the further development of elastodynamic cloaking. More recently, Chang et al. [23] showed
that the elastic ray path can be controlled exactly with the help of transformation ray theory
in which only a symmetric elastic tensor and density tensor are required. Hu et al. [24] also
re-examined the transformation theory from the deformation perspective and obtained a set
of symmetric transformed relations for controlling elastic waves approximately. Based on the
former results, some functional devices with isotropic materials have been designed under local
conformal mappings [25,26].

In this paper, we will limit our topics to the acoustic case. In 2007, Cummer et al. [3]
derived the transformation-based solution for acoustic cloak in the two-dimensional geometry
via a variable exchange owing to the isomorphism between the single polarization Maxwell
equations and acoustic equations. Soon afterwards, the physical profile of a spherical acoustic
cloak was obtained by an analogy mapping to the conductivity equation [4] and directly
through the scattering theory [27], respectively. Although the transformation-based solutions
were theoretically demonstrated to be perfect in the two- and three-dimensional cases, they are
impractical to be fabricated in reality because of the infinite mass dilemma. To overcome this
drawback, Norris [5] generalized the governing equation of acoustic waves from the inviscid
ideal fluid to the metafluid and obtained the finite mass cloaks with anisotropic stiffness and
tensor density. Another approach to eradicate the singular dilemma is to apply the so-called
regularized transformation [16,28,29] which involves deforming a small region rather than a
mere point to the cloaking region. The method solved the problem to some extent, however,
it should be emphasized that with a small regularization parameter the material parameters
near the inner boundaries are still extremely large and are impossible for practical fabrication.
Inspired by the deformation description in the continuum mechanics, Chang et al. [6] regarded the
geometry transformation as deformation in the language of finite elasticity and gained an intrinsic
comprehension of the transformation method for electromagnetics, acoustics and elastodynamics.
Based on the deformation perspective, Hu et al. [7] revealed the underlying mechanism of the
non-uniqueness of transformation acoustics and derived several sets of transformation relations
by considering energy conservation and form invariance of governing equations under the local
affine transformation. Apart from the above-mentioned studies, some other approaches, such as
impedance cloaking [30], scattering cancellation cloaking [31] and active exterior cloaking [32,33]
were also proposed in the cloaking research.

The generalized transformation acoustics results in metamaterials with tensor density or
anisotropic stiffness which cannot be found in nature [5,7]. In order to verify the invisible
performance experimentally, some studies about acoustic metamaterials and fabrication of
invisibility cloaks have been implemented recently. Some approaches, such as the alternating
layered system [34–37], the composite materials with periodically arranged sound scatterers
embedded in a fluid or gas matrix [38–40] and metamaterials made of perforated plastic
plates [41], have been reported to realize the anisotropic density. It should be emphasized
that Norris et al. [36] and Urzhumov et al. [37] tried to devise cloaks by choosing the
cloaking transformation that fits the multilayered material model with attainable materials,
instead of seeking challenging metamaterials to meet the demand of a particular cloaking
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transformation. The pentamode materials, which were proposed by Milton & Cherkaev [42] in
1995, are another generic metafluid for achieving anisotropic stiffness promisingly. A simple
sample has been fabricated with the current state-of-the-art lithography recently [43]. On
the premise of the above studies, some invisibility cloaks have been fabricated and verified
experimentally. For instance, Popa et al. [44] and Zigoneanu et al. [41] have demonstrated
the effectiveness of ground cloaks experimentally in the two- and three-dimensional cases,
respectively. An acoustic cloak comprised perforated plates for generating virtual images was
validated by Hu et al. [45]. Apart from the above-mentioned homogeneous cloaks, an annulus
cloak constructed with a network of acoustic circuit elements [46], and a directional three-
dimensional cloak designed on the basis of the scattering cancellation technique [47] were also
validated experimentally.

Norris [5] proved that the singular mapping will inevitably result in the infinite mass dilemma
for inertial cloaks, a generic class of cloaks defined by scalar bulk modulus combined with
anisotropic density. However, avoiding the singular profile and obtaining a near-perfect cloak is
possible through the ray tracing method which is based on the high-frequency approximation
theory, as manipulated in the recent paper about cloaking for out-of-plane shear waves [48].
Thanks to the isomorphism in the two-dimensional case, the results reported in [48] can be
extended to the acoustic case directly via variable exchanges. Nevertheless, similar analogy
does not exist in the three-dimensional case. In this paper, we try to devise a broad family
of non-singular acoustic cloaks by examining push-forward mappings from a ray trajectory
perspective. It is shown that cloaks constructed by the present method are actually the so-
called eikonal cloaks [5,37], which will not cause any scattering at the cloaks’ outer boundary
and will return to perfect cloaks when the transport equation is taken into consideration.
The results contribute to illuminate the difference between eikonal cloaks and perfect
cloaks essentially.

This paper is structured as follows. In §2, several constraint equations governing the variation
of material parameters of eikonal cloaks are derived through Hamilton’s equations of motion,
the eikonal equation and the pre-designed ray equations. The perfect matching conditions
are considered in order to reduce radiation strength caused by the impedance mismatch.
As an illustration, the classical linear transformation mapping [1,4] is adopted to design a
spherical cloak without singular parameters for both density and bulk modulus. Actually, the
kind of cloak still has singularity, because infinite speed of sound is required at the inner
boundary. To thoroughly overcome this problem, a ‘reduction’ manipulation is implemented
to a cylindrical cloak for later numerical demonstration. In §3, some numerical simulations are
implemented to demonstrate the cloaking performance for both eikonal cloak and ‘reduced’
cloak. Finally, some concluding remarks from this study are summarized in §4. Here, the
summation convention over repeated lowercase Latin indices is adopted over the range 1–3.

2. Design of the spherical cloak
There is no doubt that a push-forward mapping, which involves deforming a region such that
a point is mapped to the inner boundary of a cloak, will inevitably result in a singular inertial
cloak. This paper adopts the mapping, but from a ray trajectory perspective, to derive near-perfect
spherical cloaks (PSCs) with adjustable non-singular material parameters. Figure 1 illustrates
the analytical model in which a spherical cloak, with the inner radius a and outer radius b, is
presented with some rays winding around it. In the spherical coordinates, the cloak is orthotropic
and should be characterized by two physical quantities, namely the scalar bulk modulus λ and
tensor density ρ with principal components ρr(r), ρθ (r) and ρϕ(r). For convenience but without
loss of generality, a time harmonic plane wave p0 = ei(k0x2−ωt) which propagates along the positive
direction of the x2-axis with unit amplitude is considered, where k0 is the wave number in the
homogeneous surrounding medium Ω0, and ω is the circular frequency of the incident wave.
Correspondingly, the transmitted wave in the cloak Ωc can be represented as pc = ei(kc·x−ωt),
where kc is the wavevector varying from position to position.
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Figure 1. (a) The analytical model for acoustic spherical cloak; (b) schematic diagram for the geometrymapping r = f (R) from
a virtual space to the physical space, and the arrowed rays reflect the transformation effect. (Online version in colour.)

(a) Ray trajectory formulation
The ray tracing method is a straightforward manner to investigate propagation characteristics for
various kinds of wave phenomena. Its theoretical foundation is the high-frequency asymptotic
method that uses an approximate time harmonic high-frequency solution of the governing
equation to deduce the eikonal equation [49]. Subsequently, the eikonal equation is applied to
formularize the Hamiltonian for tracing the energy flux. The governing equation of acoustic
waves in metafluid with tensor density reads as

∇ · (ρ−1∇p) = αp̈, (2.1)

where α = 1/λ is the compressibility, and ρ = ρ0I corresponds to the ideal fluid. Inserting the
ansatz solution p(x, t) = P(x) exp[−iω(t − T(x))] to (2.1) and arranging the terms in order of circular
frequency ω, we have

− ω2P
[(

ρ−1∇T
)

· ∇T − α
]

+ iω
[(

ρ−1∇P
)

· ∇T +
(
ρ−1∇T

)
· ∇P + P∇ ·

(
ρ−1∇T

)]
+ ∇ ·

(
ρ−1∇P

)
= 0, (2.2)

where P(x) and T(x) are the smooth scalar functions of coordinates, equation t = T(x) represents
the moving wavefront and ∇T = k/ω is the slowness vector of the wave under consideration.
Because (2.2) should be satisfied for any frequency, the expressions with ω2, ω1 and ω0 must
vanish and we obtain the following equations(

ρ−1∇T
)

· ∇T − α = 0, (2.3)(
ρ−1∇P

)
· ∇T +

(
ρ−1∇T

)
· ∇P + P∇ ·

(
ρ−1∇T

)
= 0 (2.4)

and ∇ ·
(
ρ−1∇P

)
= 0, (2.5)

(2.3) and (2.4) are the vanishing higher-order terms and play a fundamental role in the ray tracing
method for high-frequency acoustic waves. Generally, (2.3) and (2.4) are called eikonal equation
and transport equation, respectively, and the former controls the paths of energy flux, whereas
the latter determines the energy distribution along the paths.

As for this study, the eikonal equation along the ray trajectory can be written in the cloak and
surrounding medium, respectively, as

ρ−1
ij liljk

2
c − αcω

2 = 0 in Ωc (2.6)
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and

ρ−1
0 k2

0 − α0ω
2 = 0 in Ω0, (2.7)

where ρij and αc are the density component and compressibility of the spherical cloak,
respectively, ρ0 and α0 are the density and compressibility of the homogeneous medium in
Ω0, respectively, and 1 = kc/kc, where 1 (with component li) represents the unit direction
vector. Eliminating ω2 from (2.6) and (2.7) and notating the normalized inverse density tensor,
compressibility and wavenumber, respectively, as cij = ρ−1

ij /ρ−1
0 , α = αc/α0 and k = kc/k0, we

obtain the Hamiltonian with the identical form as that in [48]

H = 1
2

[
k2 − n2 (l, x)

]
, (2.8)

where n is the refractive index varying with position x and orientation I and its square can
be expressed in the Cartesian coordinates as n2 = α/cijlilj. With regard to ray tracing for wave
propagation, Hamilton’s equations of motion have the form [48–51]

dx
dτ

= ∂H
∂k

= k − 1
2

∂n2

∂k
= s (k, x) (2.9)

and
dk
dτ

= −∂H
∂x

= 1
2

∂n2

∂x
, (2.10)

where τ parametrizes the path and s denotes the ray vector which is tangential to the ray trajectory
and indicates the direction of energy flux. Following (2.9), it can be seen that τ and s are connected
by the arc length |dx| = |s|dτ . The ray vector s can be written in the Cartesian coordinates as
si = cijkj/cpqlplq.

The transformation method interprets a push-forward mapping as a geometry transformation
from a virtual space to the physical space. Actually, an alternative perspective, regarding the space
transformation as the winding rays of energy flux, is more straightforward, as shown in Figure 1b.
Here, we examine the following push-forward mapping

r = f (R), θ = Θ and ϕ = Φ, (2.11)

where the uppercase letters (R, Θ , Φ) and lowercase letters (r, θ , ϕ) are the spherical coordinates
in the virtual space and physical space, respectively. For the sake of simplicity, a line which is
parallel to the x2-axis in the virtual space is considered, and it can be formulated in the spherical
coordinates as R = x10/(sin Θ cos Φ) = x30/ cos Θ , where x10 = b sin θ0 cos ϕ0, x30 = b cos θ0 and
(b, θ0, ϕ0) are the spherical coordinates of the incident point. According to (2.11), the ray equations
in the physical space are formulated as

r = f
(

b sin θ0 cos ϕ0

sin θ cos ϕ

)
and r = f

(
b cos θ0

cos θ

)
. (2.12)

(b) Constraint equations of material parameters
The components of a tensor in the Cartesian coordinates (x1, x2, x3) and those in the spherical
coordinates (r, θ , ϕ) are related through the transformation of coordinates. In regard to the vector
and second-order tensor, the transformation relations are formulated in the following form,
respectively

ki = βii′ ki′ , cij = βii′βjj′ ci′j′ with βmm′ = Jmm′

hm′
= ∂(x1, x2, x3)

hm′∂(r, θ , ϕ)
, (2.13)

where hr = 1, hθ = r, hϕ = r sin θ are the scale factors in the spherical coordinates, Jmm′ is
the Jacobian transformation matrix and the quantities with and without prime represent the
components in the spherical and Cartesian coordinates, respectively. The underline for repeated
indices means equal values only, and the summation convention is not used here.
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After some mathematical manipulation, we have the following differential equations, which
link cloaks’ material parameters to a specific transformation mapping, from the first Hamilton’s
equation of motion.

dr
rdθ

= krcr

kθ cθ
= Rf ′(R)

r
sin θ

cos θ
(2.14)

and
dr

r sin θdϕ
= krcr

kϕcϕ
= Rf′(R)

r
sin θ sin ϕ

cos ϕ
, (2.15)

where cr, cθ and cϕ are the three non-vanishing principal components of the normalized inverse
density tensor. The Hamiltonian equals to zero along the ray trajectory, which means that the
eikonal equation is satisfied if the ray propagates along its real path. Thus, the combination
of (2.8), (2.9) and (2.13) yields the following equation

crk2
r + cθ k2

θ + cϕk2
ϕ = α, (2.16)

(2.16) is the standard equation of an ellipsoid centred at the origin in the wavevector space
(kr, kθ , kϕ)). Therefore, the specific expressions of kr, kθ and kϕ can be obtained tactfully by using
the ellipsoid parametric equations as long as the form of (2.14) and (2.15) holds.

kr =
√

α

cr
sin θ sin ϕ, kθ =

√
α

cθ
cos θ sin ϕ and kϕ =

√
α

cϕ
cos ϕ. (2.17)

The positive and negative signs of the expressions in (2.17) are determined as follows. Taking a
ray propagating from the fourth octant to the first octant as an example, as illustrated in Figure 1b,
it is evident that kϕ should take a positive sign. Subsequently, the signs of kr and kθ can be
easily defined according to (2.15) and (2.14), respectively. Finally, the combination of (2.14), (2.15)
and (2.17) yields the following constraint equations

cr

cθ
= cr

cϕ
=

(
Rf ′

r

)2

. (2.18)

Another constraint equation among material parameters of the spherical cloak can be deduced
from the second Hamilton’s equation of motion. Following equations are the decoupled form
of (2.10) in the spherical coordinates.

dkr

dτ
− kθ

sθ

r
− kϕ

sϕ

r
= 1

2
∂n2

∂r
, (2.19)

dkθ

dτ
+ kr

sθ

r
− kϕ

sϕ cos θ

r sin θ
= 1

2
∂n2

r∂θ
(2.20)

and
dkϕ

dτ
+ kr

sϕ

r
+ kθ

sϕ cos θ

r sin θ
= 1

2
∂n2

r sin θ∂ϕ
. (2.21)

Equations (2.19)–(2.21) are not independent, and each of them can be used to derive the
other constraint equation. For simple mathematical manipulation, (2.20) is the optimal option.
Here, some quantities involved in the equation will be operated in advance. Following the
transformation of coordinates and according to (2.13), we obtain

si′ =
ki′ ci′

cpqlplq
(i′ = r, θ , ϕ). (2.22)

The parameters τ and ϕ are connected by the differential relation |dx| = |s|dτ , then we have

dτ = r sin θdϕ

|s|

√(
dr

r sin θdϕ

)2
+

(
dθ

sin θdϕ

)2
+ 1. (2.23)
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The ray parameter τ increases with the azimuthal coordinate ϕ, so the positive sign is adopted in
the expression. Substituting (2.14), (2.15) and (2.22) into (2.23), we have after some manipulation

dτ = cpqlplq
r sin θ

kϕcϕ
dϕ. (2.24)

Differentiating n2 with respect to the polar angle θ and using transformation relations in (2.13),
the right-hand side of (2.20) is expressed, after some manipulation, as

∂n2

r∂θ
= −2

r
krkθ (cr − cθ )

cpqlplq
. (2.25)

Inserting (2.22), (2.24) and (2.25) into (2.20) and according to (2.17), we obtain another constraint
equation in the differential form

1
α/cθ

d(α/cθ )
dr

= 2
r

(√
cθ

cr
− 1

)
. (2.26)

(c) Perfect matching conditions
Some boundary conditions are necessary in order to solve the differential equation in (2.26). In
regard to cloaking, the interface should be non-reflecting, which means the coexistence of incident
wave and transmitted wave only is capable of keeping the continuity conditions. Following the
time harmonic plane wave assumption and (2.13) in [5], the continuity conditions at r = b can be
written as

[p] = 0, [nicijkj] = 0, (2.27)

where the symbol [·] represents the jump of quantities beside the interface, and n =
(sin θ0 cos ϕ0, sin θ0 sin ϕ0, cos θ0) is the unit normal vector to the outer surface of the cloak.

The continuity of the tangential component of normalized wavevector is attained owing to the
continuity of pressure, thus

(k − k0) × n = 0, (2.28)

where k0 = (0, 1, 0) is the normalized wavevector in the surrounding medium. Following (2.28)
and the continuity of normal acceleration as expressed in (2.27), we have the following two
boundary conditions (

α

cϕ

)∣∣∣∣
r=b

= 1 and (αcr)|r=b = 1. (2.29)

Above boundary conditions represent the continuity requirements for azimuthal phase speed
and radial impedance, respectively. Substituting (2.18) into (2.26), and then integrating both sides
along the ray trajectory from (b, θ0, ϕ0) to (r, θ , ϕ) and according to (2.29), we have

α

cθ
=

(
R
r

)2
. (2.30)

Based on Hamilton’s equations of motion, eikonal equation, pre-designed ray equations and
continuity of azimuthal phase speed, three constraint equations among material parameters
are derived for spherical cloaks, as expressed in (2.18) and (2.30). Thanks to isomorphism of
governing equations between acoustic waves and out-of-plane shear waves, constraint equations
for cylindrical cloaks are readily available from results reported in [48] via variable exchanges[

p, ρr, ρθ , λ
] ↔

[
w, c−1

rzrz, c−1
θzθz, ρ−1

]
. (2.31)

Actually, aforementioned constraint equations are identical to (2.19) which were formulated
in phase speed form in reference [5]. Those equations categorize a generic cloak, which is
known as eikonal cloak, because such a cloak obeys the same ray trajectories as the perfect
cloak with the same geometry mapping. It should be emphasized that, different from the
transformation method, the present method illuminates the essence of eikonal cloak clearly via a
direct manipulation of ray equations. Besides, perfect matching conditions are also considered in
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this paper, which makes it possible to minimize the scattering of traditional eikonal cloak caused
by impedance mismatch.

(d) Physical profiles of spherical cloak
In order to clarify the similarity and difference between the transformation method and the ray
tracing method, we re-examine the classical linear transformation mapping [4]

r = f (R) = a +
(

b − a
b

)
R, θ = Θ , ϕ = Φ, (2.32)

Correspondingly, the material parameters of the eikonal spherical cloak (ESC) are constrained by
the following equations

cr

cθ
= cr

cϕ
=

(
r − a

r

)2
and

α

cθ
=

(
b

b − a
r − a

r

)2
. (2.33)

Cloak with physical profiles satisfying the above constraint equations will tailor the energy
flowing along the prescribed ray trajectories. The energy distribution, however, may not be
precisely controlled owing to the omitted lower-order terms in (2.2). Here, (2.4) and (2.5) are
taken into consideration for the time harmonic transmitted wave pc = ei(kc·x−ωt) in the cloak. It
is clear, as a consequence of the constant amplitude of transmitted wave, that the identity (2.5)
gets satisfied naturally and (2.4) degenerates to the following expression

∇ ·
(
ρ−1 · kc

)
= 0. (2.34)

Remembering that kc = k0k and inserting (2.17) and (2.33) into (2.34), we have after some
manipulation

ρr = b − a
b

(
r

r − a

)2
, ρθ = ρϕ = b − a

b
and λ =

(
b − a

b

)3 (
r

r − a

)2
. (2.35)

The physical profile listed in (2.35) makes (2.2) get fully satisfied and will result in perfect
invisibility. In fact, the profile can be derived directly by the transformation acoustics and is the
right case illustrated in [4]. Here, we reach the same goal by different route, which not only verifies
the correctness of transformation physics once again, but also shows its identity to the ray tracing
method essentially.

In this paper, our main concerns are not paid on achieving the perfect invisibility, but rather
on eliminating the singularity. Thus, (2.4) and (2.5) which correspond to the lower-order terms
in (2.2) will be neglected, and the eikonal equation is sufficiently accurate, as demonstrated in
the out-of-plane shear wave case [48], for controlling high-frequency acoustic waves. With four
material parameters controlled by three constraint equations, there are numerous schemes to
formulate physical profiles as long as the continuity of radial impedance is satisfied, which would
make it possible to eliminate the singularity of material parameters. As an example, the following
non-singular profile will be considered for numerical illustration.

ρr = b
b − a

, ρθ = ρϕ = b
b − a

(
r − a

r

)2
and λ = b − a

b
. (2.36)

Adopting the method of Hu et al. [52] in the area of acoustics, it is found that the same profile
as (2.36) can be obtained by introducing a virtual principal stretch λv = [b/(b − a)]2[(r − a/r)]2 in a
fictitious four-dimensional space. Although the mathematical manipulation in [52] is easier than
that of the ray tracing method, it cannot be ignored that the deformation perspective is too abstract
to have a fully understanding of the physical meanings underlying the non-singular profile. For
the narrative convenience, cloaks with physical profiles as shown in (2.35) and (2.36) will be called
PSC and ESC, respectively.
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(e) Reduction manipulation of cylindrical cloak
Actually, the aforementioned process has not solved the singularity problem completely, because
the infinite azimuthal speed of sound still exists for the profile listed in (2.36). It has been
demonstrated that the maximum azimuthal speed of sound in the metamaterial determines the
smallest possible cloaking deficiency [37]. Thus, a ‘reduction’ process is considered based on
some results shown in [48] for out-of-plane shear waves. It is shown that the cloak derived by
the ray tracing method tends to have constant cloaking performance to a change in boundary
condition. The underlying reason is that, with the ray trajectories bulging outwards, the area near
the inner boundary tends to have little influence on the whole cloaking performance, which is
comprehensible from the point of high-frequency ray theory. Consequently, we expect to construct
a kind of cloak in which the area with singular parameters could be removed without sacrificing
much invisibility. For the sake of simplicity, a cylindrical cloak is considered to illustrate some
concepts during the reduction process. The following power law mapping is efficient to bulge ray
trajectories outwards

r = a + (b − a)
(

R
b

)1/η

. (2.37)

Particularly, ray trajectories tend to approach the outer boundary of a cloak with the increasing of
η. The adjustable parameter η provides us much freedom in the reduction operation. As discussed
above, constraint equations are easily available through direct variable exchanges. As an example,
we choose the following set of material parameters.

ρr = ηr2

b(b − a)
, ρθ = (r − a)2

ηb(b − a)
and λ = (b − a)2η−1r2

ηb3(r − a)2η−2 , (2.38)

where a and b have the same meanings as their counterparts in the spherical cloak. For
convenience, cylindrical cloaks with and without reduction operation will be called ‘reduced’
cylindrical cloak (RCC) and eikonal cylindrical cloak (ECC), respectively. The parameter g = (r0 −
a)/b − a) is defined as the reduction factor which means that the annulus a < r < r0 is removed in
practical fabrication. As will be shown in §3, an appropriate reduction factor is necessary in order
to keep a balance between material availability and cloaking performance.

3. Results and discussions
In §2, parallel incident rays which correspond to the energy flux of plane wave are considered
for deriving the physical profiles of spherical cloak. However, it should be shown that the
effectiveness of the derived cloak, owing to its geometrical symmetry, is waveform independent.
In this section, several numerical simulations about ray tracing and pressure distribution were
implemented by the COMSOL MULTIPHYSICS solver to validate the eikonal cloak’s invisible
performance. To be specific, the ray tracing simulations for plane wave and spherical wave
were carried out by the mathematical particle tracing model with calculation model shown in
Figure 1a, whereas the pressure distribution snapshots with and without cloaks were simulated
by the PDE solver with perfectly matched layers [53] enclosing the computation domain. The
spherical cloak is located at the centre of the simulation domain and a point source is applied at
(−1.1 m, 1.1 m, 1.1 m). The sound-hard scatterer is achieved by setting the inner boundary r = a to
be Neumann boundary. To facilitate the computation, non-dimensional material parameters are
taken as ρ0 = λ0 = 1 for homogeneous surrounding medium, and geometry parameters of cloak
are taken as a = 0.5 m, b = 1 m.

Figure 2 shows the ray tracing results for plane wave (part (a)) and spherical wave (part (b)).
For clarity, rays emitted from the point source are traced in a plane passing through the point
source and the centre of the spherical cloak, as illustrated in Figure 2b. It can be seen that the
incident rays smoothly wind around the scatterer and perfectly return to their original paths as
if nothing were there. The colour scales depict the energy flux velocity along the rays. Intuitively,
the rays have to propagate faster when they round the obstacle to keep the phase consistent.
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Figure 2. Numerical ray tracing for plane wave in (a), and spherical wave in (b). For clarity, the rays for spherical wave are
shown in a plane passing through the point source and the centre of the spherical cloak. The scale colours indicate the energy
flux velocity. (Online version in colour.)
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Figure 3. The simulation model for pressure distribution in (a), and snapshots for three kinds of cases: (b) uncloaked field
with sound-hard scatterer, (c) cloaked field with PSC and (d) cloaked field with ESC. The pressure field is excited by a point
source located at (−1.1 m, 1.1 m, 1.1 m) and perfectly matched layers are applied to simulate infinite surrounding medium. The
snapshots in (c,d) are taken in a plane as shown in (a) and all the figures share the same scale colour. (Online version in colour.)

Because the material parameters given by (2.36) make the eikonal equation get fully satisfied, the
energy flowing trajectories should be precisely controlled, which is in good agreement with the
simulation results shown in Figure 2.

Figure 3 shows the simulation model (part (a)) and pressure distribution snapshots for
uncloaked field (part (b)) and cloaked fields with PSC (part (c)) and ESC (part (d)). The snapshots
in Figure 3b–d are taken in a plane, as shown in Figure 3a, and all the figures share the same colour
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of the spherical cloak, as shown in the lower right corner. The dashed line, dash-dot line, dotted line and solid line denote ideal
field, uncloaked field, cloaked fields with PSC and ESC, respectively. (Online version in colour.)

scale. It can be found that both the PSC and ESC reduce the scattering field significantly, which
verifies the validity of the ESC sufficiently. As mentioned in the previous discussions, the non-
singular physical profile makes near-perfect cloaking for high-frequency acoustic waves, because
we neglect the lower-order terms in (2.2). Thus, it is necessary to demonstrate the difference
between the PSC and ESC. Figure 4 illustrates the pressure distribution for several cases along
a line passing through the point source and the centre of the cloak, as the line shown in the
lower right corner. The dashed line, dash-dot line, dotted line and solid line denote the ideal
field, uncloaked field with sound-hard scatterer, cloaked fields with PSC and ESC, respectively.
Compared with the ideal field, it is evident that the sound-hard scatterer causes not only serious
amplitude disturbance, but also significant phase shift, whereas the curves for PSC and ESC are
nearly overlapping with the curve for the ideal field, which demonstrates the effectiveness of the
ESC clearly. It should be pointed out that the small difference between the curves for the ideal
field and cloaked field with PSC results from numerical error. Compared with the curve for PSC,
the near overlapping curve for ESC is phase consistent but with small difference in amplitude
distribution, which illuminates the eikonal cloak’s near-perfect invisible performance essentially.
Namely, cloaks governed by (2.18) and (2.30) can control the paths of energy flux accurately
but with small disturbance in energy distribution in that the eikonal equation is fully satisfied,
whereas the transport equation is not the case.

Scattering cross-section and scattering width, which denote the ratio of scattering energy
flux to incident energy flux, are often used to quantify the far field scattering strength for
electromagnetic waves and acoustic waves [54–56]. Here, the normalized scattering width σsw

(normalized to a bare scatterer with radius r = a) is adopted to measure the cloaking performance
quantitatively. Numerical simulations are implemented with built-in program algorithm in the
finite-element software COMSOL MULTIPHYSICS. The scatterer is achieved by setting inner
boundary as Dirichlet boundary. The material parameters of surrounding medium and geometry
parameters of cylindrical cloak are the same as those in the previous simulations, and some other
parameters are set as: η = 3 and g = 0.2. Figure 5 shows the variation of normalized scattering
width σsw for a cloaked object with angular frequency ω. It can be observed that σsw increases
with increasing ω for three kinds of cloaks, whereas their difference is decreasing. In addition,
the normalized scattering width of RCC almost drops 10 dB when ω < 13 rad s−1. These findings
imply that the reduced cloak is efficient enough to reduce the far field scattering caused by the
enclosed scatterer. Figure 6 shows the distribution of material parameters of the cylindrical cloak
along the radial coordinate, and the solid lines marked with square, triangle and circle symbols
represent ρr, ρθ and λ, respectively. The purple dash-dot line denotes the position of the RCC’s
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inner boundary. Evidently, the annulus area with extreme material parameters has been removed,
and the parameters required in the remaining part of the cloak are within the range of natural
available materials. However, achieving independent control of density and bulk modulus of
a material is really a challenging task owing to their correlation which is often expressed in
the form of an Ashby chart [37]. Although some novel ideas, such as seeking desired cloaking
transformation to fit a pre-designed material model [36,37], were proposed to construct cloaks
with attainable materials; the fact that a small filling fraction of the gaseous fluid is required near
a cloak’s inner boundary poses a real challenge to practical fabrication. Obviously, there is still a
lot of work ahead.

4. Concluding remarks
We extended the ray tracing method to the acoustic field, which makes it possible to construct
a generic acoustic cloak without singular material parameters. The eikonal equation which
corresponds to the higher-order term in (2.2) was adopted to formulate the Hamiltonian.
Following Hamilton’s equations of motion, three differential equations (2.14), (2.15) and (2.26)
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which determine the physical profiles of spherical cloak were derived. According to the pre-
designed ray equations and perfect matching conditions, three constraint equations which specify
the near-perfect eikonal cloaks were expressed in equations (2.18) and (2.30). The number of
constraint equations is less than that of material parameters, thus a series of non-singular
physical profiles can be obtained by arranging the singular terms r − a tactfully. This facilitates
the experimental fabrication and verification tremendously. Cloaks governed by equations (2.18)
and (2.30) are not perfect, because we omitted the lower-order terms in equation (2.2). A set of
non-singular material parameters, as expressed in equation (2.36), was employed to validate the
invisible performance. The ray tracing results and pressure distribution snapshots showed that
the eikonal cloak was accurate enough for controlling the paths of energy flux but with neglectable
disturbance in energy distribution. Finally, we conceived a kind of reduced cloak to resolve the
singular problem thoroughly. The numerical analysis of normalized scattering width shows that
the reduction manipulation will not sacrifice much invisibility if an appropriate reduction factor
is chosen under the power law mapping.
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