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The bulk-boundary or bulk-edge correspondence is a principle relating surface confined states to the
topological classification of the bulk. By marrying non-Hermitian ingredients in terms of gain or loss with
media that violate reciprocity, an unconventional non-Bloch bulk-boundary correspondence leads to
unusual localization of bulk states at boundaries—a phenomenon coined non-Hermitian skin effect. Here,
we numerically employ the acoustoelectric effect in electrically biased and layered piezophononic media as
a solid framework for non-Hermitian and nonreciprocal topological mechanics in the MHz regime. Thanks
to a non-Hermitian skin effect for mechanical vibrations, we find that the bulk bands of finite systems are
highly sensitive to the type of crystal termination, which indicates a failure of using traditional Bloch bands
to predict the wave characteristics. More surprisingly, when reversing the electrical bias, we unveil how
topological edge and bulk vibrations can be harnessed either at the same or opposite interfaces. Yet, while
bulk states are found to display this unconventional skin effect, we further discuss how in-gap edge states in
the same instant, counterintuitively are able to delocalize along the entire layered medium. We foresee that
our predictions will stimulate new avenues in echo-less ultrasonics based on exotic wave physics.
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The discovery of topological phases has spurred tremen-
dous efforts in photonics [1] and phononics [2] by pushing
forward investigations into defect-immune classical
systems. The bulk-edge correspondence (BEC) plays a
crucial role since it establishes a bridge between topo-
logical edge states and the Bloch band topology [3,4].
Thanks to this principle, we have witnessed many viable
routes to engineer topologically protected wave control in
recent years [5–9]. Lately, at an equally active frontier, we
find parity-time synthetic materials that enable new wave
characteristics by cleverly crafted loss and gain compo-
nents. The Hamiltonians of such non-Hermitian systems
permit exceptional singularities, where the eigenvalues
together with their corresponding eigenstates simultane-
ously coalesce, leading to highly unusual functionalities
such as enhanced sensing and one-way invisibility
cloaks [10].
Meanwhile, the combination of non-Hermitian and

topological physics is attracting considerable interest
[11–20], partially stemming from the controllable non-
Hermitian elements, capable of providing additional free-
dom to harness topological phases [15,16]. But most
importantly, such systems open yet unexplored avenues
in physics that strongly challenge the BEC by breaking
with its most common conventions. The so-called non-
Hermitian skin effect [21–26], a phenomenon featured by
abnormal bulk state localization, has thoroughly under-
mined our understanding of the Bloch band topology.

Simply put, based on nonreciprocal hopping of electrons
that move in preferential directions, translational symmetry
breaking is brought forward and consequently the failure of
conventional Bloch bands stands before. Beyond the rich
physics involved, extensions of the skin effect to classical
systems may provide new opportunities in reflectionless
guiding of waves based on the combination of nonrecip-
rocal non-Hermitian media and topological ingredients.
In this Letter, we propose a continuum mechanical

approach to access non-Hermitian topology. We numeri-
cally employ piezoelectric semiconductors which, when
electrically biased, generate a nonreciprocal response
owing to the acoustoelectric effect. Thanks to the intrinsic
electron-phonon interaction, sound amplification or
attenuation is taking place in response to an appropriately
applied electric field, which is interesting for various
appealing applications [27–30]. Thus, this accessible piezo-
phononic platform is employed to mimic the non-
Hermitian Su-Schrieffer-Heeger (SSH) model [21,31] for
mechanical vibrations. We predict an ultrasonic counterpart
to the non-Hermitian skin effect and the ensuing failure of
the Bloch band topology. By reversing the applied field and
tuning the attenuation, we show the ability to engineer the
confinement of bulk and edge states as one desires. To be
exact, we find that topological edge states can even become
fully delocalized along the entire crystal bulk which,
together with the aforementioned skin states, opens hori-
zons of possibilities in non-Hermitian wave engineering.
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We begin with a one-dimensional (1D) piezophononic
layered system as shown in Fig. 1(a), whose unit cell
contains two different materials of length LA and LB, where
the subscripts A and B denote InSb and GaAs, respectively.
The two crystals of the wurtzite family are stacked along-
side their hexagonal symmetry axis (z direction), along
which, via subwavelength electrodes, a dc electric field E0

is applied to the GaAs layers only [see yellow arrows in
Fig. 1(a)], to constitute a non-Hermitian activation of the
piezophononic medium. In a small signal approximation,
the dispersion of longitudinal vibrations is expressed as
[27]

ρω2 ¼ k2
�
cþ e2

ε

1 − γ k
k0
þ i ω

ωd
ð kk0Þ2

1 − γ k
k0
þ i½ωc

ω þ ω
ωd
ð kk0Þ2�

�
; ð1Þ

where the involved quantities are the frequency f ¼ ω=2π,
the wave number k0 ¼ ω=v0, the stiffness c, the mass
density ρ, the piezoelectric constant e, and the permittivity
ε. Moreover, to simplify the equation, we have introduced
the dielectric relaxation frequency ωc ¼ σ=ε with conduc-
tivity σ, the diffusion frequency ωd ¼ v20=dn with electron
diffusion constant dn and sound velocity v0 ¼

ffiffiffiffiffiffiffiffi
c=ρ

p
, and

the drift parameter γ ¼ −μnE0=v0 with electron mobility
μn. When the electric field is turned on, nonreciprocity
kicks in comprising loss along one path
with gain in the opposing direction as rendered in Fig. 1
(b). By substituting k=k0 ≈�1 into Eq. (1), here,

k ¼ k0 þ ik00, we obtain two modal solutions denoted as
k1 and k2 representing the forward (k01 > 0) and backward
(k02 < 0) propagating modes, respectively. As an example,
we perform a calculation with specific parameters of GaAs:
ρ¼5320 kg=m3, c¼85.5GPa, ε¼10.89, e¼−0.16C=m2,
and μn ¼ 0.85 m2=ðV · sÞ. In Fig. 1(c), we plot their
imaginary parts k001 and k002 as a function of E0, which
display a remarkable nonreciprocal response within the
frequency range studied. Of particular interest is the
Cherenkov threshold γ ¼ �1 [dashed lines in Fig. 1(c)],
where the drift velocity equals the sound speed, leading to
perfect nonreciprocity, i.e., lossy wave propagation in one
direction and unattenuated behavior in the opposite one. To
be specific, when E0 ¼ −v0=μn, forwardly directed sound
propagation is entirely attenuation free (k001 ¼ 0, see white
dashed lines) while the opposing mode displays some
losses as rendered in the k002 plot. If we are to swap the sign
of the electric field, i.e., E0 ¼ v0=μn, the scenario is
reversed as indicated by the black dashed lines.
In order to compute the complex scattering properties of

the layered piezophononic medium illustrated in Fig. 1(a),
we employ a directional dependent transfer matrix method
for both periodic and finite configurations comprising both
free and rigid boundary conditions. This method consists in
transferring the normal displacement u and stress τ from the
right boundary to the left one, i.e.,

�
ur
τr

�
¼ T

�
ul
τl

�
; ð2Þ

where T denote the transfer matrix and the subscripts (l)
and (r) indicate their respective boundaries, left and right.
For periodic systems, e.g., considering the displacement
only, the translational symmetry requires ur ¼ eikBLul,
where kB and L denote the Bloch wave number and the
lattice period, respectively, which leads to a secular
equation, detðT − eikBLIÞ ¼ 0, to solve an eigenvalue
problem comprising Bloch waves. Likewise, we can
construct a finite system containing N unit cells (for
details, see [32]). As rendered in Fig. 2, we will consider
both scenarios to unveil the breakdown of the conventional
BEC in piezophononic layered media. As computations
display in Fig. 2(a) and Fig. 2(b), first, we compute a group
of Bloch bands with specific parameters: LA ¼ 0.5 mm,
LB ¼ 2.0 mm, and ρ ¼ 5770 kg=m3, c ¼ 47 GPa for
InSb. In the Hermitian limit with zero attenuation (phase
I), a purely real band gap is opened due to the impedance
contrast in the periodic crystal. When increasing the one-
way attenuation k001 [see Fig. 2(b)], imaginary eigenfre-
quencies set in, while the real valleys coalesce towards an
exceptional point (EP), phase III. Figure 2(b) clearly shows
this non-Hermitian phase transition whose EP resides at
k001 ¼ 266 m−1. This particular phase displays the most
unusual topological feature in finite systems as we will
discuss later [32], in general however, while the externally
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FIG. 1. Mechanical SSH model with nonreciprocal coupling.
(a) A piezophononic non-Hermitian system, electrically biased
with electric field E0. The atomic chain illustrates how the
continuum system maps to a non-Hermitian SSH model. (b) Mo-
dal space, showing the physical meaning of the complex modal
solutions k ¼ k0 þ ik00. (c) The imaginary parts of the two modal
solutions, k001 and k002 , are plotted as a function of E0 for
frequencies of interest. The dashed lines indicate the Cherenkov
threshold where either k001 ¼ 0 or k002 ¼ 0, indicating perfect one-
way transmission.
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applied electric field must satisfy the Cherenkov threshold,
appropriate electrical or optical carrier density manipula-
tion ensures the reaching of the necessary attenuation levels
[29]. Indeed, Fig. 2(a) displays with clarity how the added
unidirectional loss serves as the control parameter to close
and reopen the complex bands, across phases II to IV. Next,
we consider a finite crystal of length N ¼ 50. First, we
apply free boundary conditions, and in the second case, we
consider periodic boundary conditions, hence, the latter is
regarded as a superlattice. The eigenfrequencies are
computed against the attenuation strength k001, where it
immediately stands out that the crystal with free interfaces
hosts an edge state which, due to multiple scattering, is
offset the exact midgap frequency, as rendered by red dots
in Fig. 2(d). As expected, the periodic system considered
[Fig. 2(c)] displays the mode coalescence at phase III
equivalent to the former discussion. By interchanging
the boundaries to free, instead, Fig. 2(d) displays
how the phase transition is now pushed back at about
k001 ¼ 430 m−1, far from the predicted value mentioned
earlier. This anomalous feature is merely a glimpse of the
vast unusual non-Hermitian characteristics that we are
going to discuss in what follows.
To shed more light on non-Hermitian topology, now, we

intend to introduce another factor, the impedance ratio
ZA=ZB, which is at least equally important in manipulating
topological phases when compared to the attenuation. In
order to realize such impedance tuning, one is able to
replace the InSb constituent of the crystal with a different
material or to structure it for a desired effective impedance
ZA, in the vein of metamaterials. Based on the same
numerical approach discussed before, we compute a phase
diagram as a function of k001 and ZA=ZB, as shown in
Fig. 3(a), for a forward-biased (positive electric field)
piezophononic medium. The dashed line indicates the

phase boundaries as predicted by the complex Bloch band
computations, while the solid one is obtained from the
eigenfrequency spectra of finite systems. Both degeneracies
merge at the lossless (Hermitian) limit when the impedance
contrast vanishes ZA=ZB ¼ 1. According to the Bloch band
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forward-biased crystal. The dashed and solid lines mark the phase
transition points calculated under periodic and free boundary
conditions, respectively. Background colors are used to differ-
entiate the gapped (pink) from the gapless (blue) phase when
N ¼ 50. The purple vertical dashed line corresponds to the
phases highlighted in Fig. 2 for the piezophonic medium made
of InSb and GaAs (constant impedance). (b) Numerically calcu-
lated eigenfields for the selected phases as indicated in panel (a).
(c) A surface plot mapping the magnitude of the transfer matrix
determinant j detðTÞj.
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topology, the conventional BEC predicts the formation of
topological edge states up until reaching the phase tran-
sition point III. However, according to our finite-size
computations, beyond this point, but below the solid line
that borders the gapless phase (blue region), the Bloch band
topology fails to predict the onset of interface states [phase
IV] as seen in Fig. 3(a). In other words, the entire gapped
pink zone of the phase diagram constitutes the phase space
sustaining non-Hermitian non-Bloch edge states. In addi-
tion, when increasing the length of the finite lattice, the
solid line never converges with phase III but transitions
well below it [32]. To relate these properties to the non-
Hermitian skin effect, we embark on investigating the
eigenfields at the marked representative phases. As
Fig. 3(b) illustrates, within the conventional Hermitian
phase I, all bulk states are fully extended within the entire
crystal, and as usual, the in-gap edge state quickly decays
from left to right (by virtue of ZA < ZB [32]) with growing
lattice site number. However, for phases II, III, and IV, the
non-Hermitian nonreciprocity inhibits acoustic energy
from flowing toward the positive z direction, giving rise
to an anomalous bulk states confinement. Alone by the
shape of this skin state as rendered in Fig. 3(b), one can
infer a violation of the translational symmetry and, there-
fore, a breaking with the common notion of Bloch
periodicity. Furthermore, the conservation of energy
implies the unitarity of the transfer matrix. The magnitude
of the determinant j detðTÞj of Eq. (2), which is computed
in Fig. 3(c), shows the nonunitary fingerprints of the skin
effect in that both bulk and edge states with growing
attenuation confine stronger at the left crystal termination,
resulting in a shrinking acoustic skin depth of the eigen-
fields in Fig. 3(b), from phase I to IV.
In the next case study, we reverse the applied electric

field in the piezophononic medium, i.e., E0 ¼ −v0=μn. In
such a situation, the attenuation axis controlling the
topological phase transition is replaced by k002 according
to the convention discussed in Fig. 1. The phase diagram
depicted in Fig. 4(a), appearing rather similar to the
previous one, again demonstrates the breakdown of the
Bloch band topology. In Fig. 4(b), however, the calculated
eigenfields for the representative phases show some drastic
difference. First of all, based on the reversal of E0, bulk
states confine at the right boundary. Yet, the edge states, for
the specifically selected attenuation values, appear to dis-
play their very own non-Hermitian topological phase
transition. As we can see in Fig. 4(c), the topological edge
states experience an unusual near-edge–bulk–far-edge
transition along with an increase of jk002j. Particularly, what
clearly stands out is the critical phase III [see Fig. 4(b)], at
which the in-gap edge state becomes fully delocalized,
while all bulk states remain localized—a truly non-
Hermitian but anomalous skin effect.
We discussed how the non-Hermitian skin effect dras-

tically reshapes the eigenfrequency spectra of finite

systems. In this manner, we take the study one step further
by examining the influence of different boundary condi-
tions. Apart from the free case study (left panels), two
additional configurations are considered, which comprise
samples with the left (right) end fixed and the right (left)
one free, as sketched in the middle (right) panels of Fig. 5.
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On top of that, we will also inspect the influence of the
sample length by choosing N ¼ 50 and N ¼ 100 in the top
and bottom panels, respectively. Right away, for all three
problems, we see that the shorter sample requires higher
levels of damping before the gap closure sets in. This is
unusual, but intuitive since more attenuation is required in a
shorter sample to dampen acoustic energy. The free-free
problem hosts one edge state, reminiscent of the example
presented in Fig. 2(d). However, when the non-Hermitian
piezophononic crystal is treated as a fixed-free problem, it
appears to morph into a topologically trivial system
incapable of sustaining edge states. In the final, free-fixed
problem, a pair of highly anomalous topological edge states
materialize within the nontrivial band gap, which appear to
coalesce toward the Hermitian limit (k002 ¼ 0). These three
cases constitute scenarios of non-Hermitian topology and
their unusual sensitivity to the crystal terminations that
have no counterpart in Hermitian systems.
In conclusion, by utilizing the acoustoelectric effect in

layered piezophonic semiconductors, we have demon-
strated the non-Hermitian skin effect and explored
unparalleled topological physics for ultrasonic vibrations.
Surprisingly, we show that such complex topological
structures behave utterly differently compared to their
Hermitian counterpart, in that Bloch bands cannot accu-
rately predict wave properties in those finite non-Hermitian
systems. Non-Hermiticity, in terms of losses, is usually
considered a drawback in controlling sound and vibrations.
Here, the tunable attenuation offers a flexible way to
manipulate topologically confined edge states in finite
geometries, in that losses can trap those states at either
face of the sample or even in between. Beyond their
fundamental significance, we foresee that the skin states
and anomalous edge states presented here may stimulate
investigations in ultrasonic devices for topologically robust
and reflectionless signal guiding.
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