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Topological Sound Pumping of Zero-Dimensional
Bound States

Penglin Gao* and Johan Christensen*

Topological phases have spurred unprecedented abilities for sound, light, and
matter engineering and recent progress has shown how waves not only
confine at the interfaces between topologically distinct insulators, but in the
form of zero-dimensional non-propagating states bound to defects or corners.
Majorana-like bound states have recently been observed in man-made Kekulé
textured lattices. It is shown here how the acoustic version of the associated
Jackiw–Rossi vortex embodies a topological pumping process, in which the
spectral flow of corner states adiabatically merge with the said Majorana-like
state. Moreover, it is argued how the chirality of the Kekulé vortex additionally
maps into a 2D quantum-Hall system comprising spatially separated sonic
hotspots. It is foreseen that the findings should provide novel exotic tools to
enable contemporary control over sound.

Bloch bands in man-made crystals not only display forbidden
and allowed regions of wave propagation, but also embody the
geometrical topology of eigenstates.[1,2] Moreover, topological
bulk bands manifest in surface and interface related properties
through the notion of the bulk-edge correspondence predicting
boundary states via topological invariants. These prominent at-
tributes are responsible for a wealth of thriving frontier investiga-
tions unveiling exotic defect-immune guiding of sound and me-
chanical vibrations.[3–11] Most recently, phononic and photonic
higher-order topological insulators (HOTIs) that sustain zero-
dimensional (0D) corner states in 2D and 3D systems, have been
proposed as a counterpart to topologically protected systems abid-
ing by the bulk-edge correspondence. Along this direction, many
fascinating HOTI experiments have been constructed,[12–18]

among which a deep-subwavelength topological lens was pro-
posed capable of breaking the sonic diffraction limit.[19]

In contrast to HOTIs that support lower-dimensional states
at their external boundaries, the Jackiw–Rossi vortex has shown
capability to bind an exact zeromode within the lattice-bulk.[20–22]

Quantum mechanical systems in particular hold great promise
for these Majorana-zero modes as they appear highly favorable
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for braiding-based topological quantum
computation.[23–25] Recently, a wealth of
experimental efforts has sparked curios-
ity among phononic and photonic re-
searchers in the pursuit of a classical
analogy.[26–29] Based on a so-called Kekulé
binding mechanism in artificially man-
made macroscopic lattices, equivalent zero
modes of vibrations, sound, or light have
shown intriguing properties for topologi-
cal robust single-mode wave control and
confinement. Interestingly, it has been
shown that such classical implementations
of the Jackiw–Rossi binding mechanism
facilitate particle-hole symmetry counter-
parts, however, in the absence of the pe-
culiar Majorana self-conjugation relation.

In this article, we present the acoustic Jackiw–Rossi vortex
in the framework of a topological pumping process. A topolog-
ical pump is known to generate robust energy transfer across
a finite structure when its system parameters are adiabatically
and cyclically varied, as has been shown in recent exciting wave-
based experiments.[30–32] These implemented topologial pumps
typically incorporate adiabatic modulation of the geometrical pa-
rameters, which leads to a smooth crossing of propagating edge
states from one boundary to the opposite. Moreover, since cor-
ner states can be understood through the vectorial Zak phase,
it is not surprising that a 2D pumping process can push a
corner state excitation into the opposite corner through bulk-
mode hybridization.[33] Latest experimental implementations of
the Jackiw–Rossi vortex employ a Kekulé texture to artificially
decorated lattices that embody a winding process.[26,27] Here, we
show that the binding mechanism indeed can be presented in
terms of a pumping process encompassing the polar paramaters
of the Kekulé modulation, which leads to a sonic spectral flow
during the adiabatic structural tuning. Surprisingly, we find that
the 0D states in finite crystals evolving from the adiabatic pump-
ing process incorporate corner states that spectrally flow in the
form of the coveted Majorana-like zero modes. Simply put, as
opposed to the aforementioned findings reporting on the spatial
crossing of either edge or corner states, our reported evolution
deals with the merging of corner states into a non-propagating
state that is bound to a topological defect. Incorporating fractional
and segmentations to the angular phase texture, further corrobo-
rates the pumping origin of our topologically robust sonic state.
Finally, we show the ability to engineer a distinct chirality as one
desires, in which the Kekulé angular phase represents a synthetic
dimension of one-way flowing sound. In other words, the topo-
logical pumping process of the Jackiw–Rossi vortex maps into a
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Figure 1. A sonic Jackiw–Rossi vortex hosting a Majorana-like zero mode at its core. a) Schematic of the Kekulé distorted lattice (n = 1), which illustrates
the position-dependent crystal variation. The background color indicates the width of the spatial distribution of the Kekulé induced band gap, which is
exactly zero at the vortex core. The labels S and P indicate the excitation and probe points, respectively. b) Comparison between the calculated pressure
spectra |P(Ω)| using both FEM andMST predictions. Frequency𝜔 is normalized toΩ = 𝜔a∕2𝜋c, with c being the speed of sound and a the lattice period.
c) The pressure field of the Majorana-like bound state [see P1 in panel (b)] as obtained by multiple scattering simulations.

2D quantum-Hall system comprising the well known spatial sep-
aration of charges,[34] in our case, according to the vortex hand-
edness, we obtain opposing heart-shaped sonic spots.
We begin the study by briefly revisiting the engineering of a

Majorana-like zero mode in a distorted sonic lattice by means
of a multiple scattering theory (MST). In Figure 1a we depict
the acoustic analogue of a Jackiw–Rossi vortex containing a
man-made Kekulé texture. As recently experimentally verified in
ref. [26], such vortex is readily designed by tuning the acoustically
rigid cylinder-radii in a position-dependent fashion, that is,

R(r) = R0 + 𝛿R(r) cos
[
K ⋅ r + 𝜙(r)

]
, (1)

whereR0 is the undisturbed radius, 𝛿R(r) denotes the radius vari-
ation, K and 𝜙(r) stand for the Kekulé wave vector and phase,
respectively. The two position-dependent terms read: 𝛿R(r) =
Δ tanh(r∕𝜉) and 𝜙(r) = n𝜃, with 𝜉 and n being the vortex radius
and winding number, respectively. This Kekulé texture is indeed
a topological winding process that encompasses the gapless core
of the Jackiw–Rossi vortex, at which the triangular lattice remains
undistorted, i.e., 𝛿R(0) = 0. However, the targeted coiling 𝜙(r) de-
termines the angular variation of the width that separates the
acoustic valleys at the Γ point of the band diagram. The coloured
angular fingerprints of the bandwidth of this band gap, is clearly
seen in Figure 1a. Beyond the man-made winding, the Kekulé
texture also encompasses a radial component 𝛿R(r) (Equation (1))
that is the responsible actor controlling the tightness of the con-
fined Majorana-like state. We employ a MST in order to pre-
dict the complex acoustic interplay among the rigid cylinders
of the Jackiw–Rossi vortex in response to a point source.[35] In
the simulations we selected the following geometrical param-
eters: R0 = 0.35d, Δ = 0.15d, 𝜉 = 2a, and n = 1, with the near-
est neighbor spacing d = a∕

√
3. Figure 1b depicts the calculated

pressure spectra evaluated at point P of the schematic, illustrat-
ing a remarkable agreement with FEM predictions. The winding-
induced anisotropy of the bandgap that we discussed in Figure 1a
is further corroborated through the angled pressure state profile
seen in Figure 1c, which was also calculated with the MST.
In what follows, we argue that the sonic Kekulé winding

indeed embodies an adiabatic pumping process in dependence
of the polar Kekulé phase, in that the Majorana-like zero mode

smoothly evolves from the spectral pumping of corner states.
The polar Kekulé parameters, which include both 𝜙(r) and 𝛿R(r),
will serve as the corner stone behind the pumping process. We
extract these two parameters from the Jackiw–Rossi vortex, which
means we need to dismantle the actual vortex and its zero mode
to elucidate the pumping origin. The tearing down of the vortex is
meant in way that we must gradually fix the radial component of
the Kekulé texture, that is, 𝛿R = constant. Smoothly varying this
fixed value would correspond to several concentric circles, each of
constant 𝛿R, drawn across the Jackiw–Rossi vortex in Figure 1a.
However, we revive the zero mode by choosing finite rhombi that
will localize this mode at their corners instead. This procedure
is indeed best captured by a number of adiabatic spectral flows,
each computed for constant values of 𝛿R, but as a function of
frequency and the Kekulé phase 𝜙 that is implemented in the
rhombus geometry. In other words, when smoothly varying
both the angular and radial component of a Kekulé texture in
a finite geometry, its corner states will adiabatically merge with
the Majorana-like zero mode. This pumping process indeed
constitutes a Cartesian representation of our polar Jackiw–Rossi
vortex, which is in stark contrast to waves pumped across a 1D
lattice. To cast this process within the framework of topological
corner states and the afore discussed Majorana-like states, we
define the spatial origin of such 0D modes at the center-cylinder
of their triangular lattices. In doing this, we design the same
geometrical topology for the system depicted in Figure 1a and the
finite rhombi in Figure 2. To elaborate on the significance of this
approach, we numerically compute the spectral flow of the 0D
in-gap states of finite rhombi made of the previously discussed
triangular lattice of rigid cylinders. The spectral flow maps the
eigenvalues of a sonic rhombus as a function of the Kekulé phase
𝜙. These computations depict how the 0D modes emerge from
the bulk-bands in dependence of the angular Kekulé winding
in the form of two in-gap residing corner states, denoted by C±
as seen in Figure 2. The ± indicates that that two corner states
contain opposing chirality during the pumping process, which
we will elaborate later. The adiabatic pumping process gathers
bothMajorana-like and corner states under the same umbrella in
that we further must consider the radial component 𝛿R(r) of the
cylinder radius modulation. Thanks to its hyperbolic tangential
component, as explained in the former, the radial variation
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Figure 2. Topological sound pumping of 0D bound states. Upper panels: The background periodic lattices depict four uniformly Kekulé modulated
structures with 𝜙 = 𝜋 at various values of 𝛿R according to the colored background-columns (𝛿R∕d = 0.06, 0.09, 0.12, and 0.15). Centered at r = 0 of
the red coordinate system, we cut two rhombi that are capable to sustain topological corner states denoted by C±. The magnifications of the rhombi
terminations illustrate the same topology surrounding the center-cylinder. The cyan border represents a hard-walled interface. Lower panel: Spectral flow
of the in-gap states when the Kekulé phase 𝜙 winds a full 2𝜋 period for four selected values of 𝛿R, depicting the various manifestations of the bulk-corner
correspondence. When 𝛿R → 0 the bound states within the shrinking bandgap approach the Dirac frequency ΩD = 0.88.

approaches zero at the cluster core in Figure 1a, at which the
zero mode is pinned spatially. The spectral flows of the corner
states that are presented in Figure 2 are computed against 𝛿R
to underline the second component of the adiabatic geometrical
variation. Moving from right to left, that is, when decreasing 𝛿R
we immediately predict a narrowing of the topological bandgap,
which results in a smooth shift comprising the spectral winding
of corner states C± toward the Dirac frequency ΩD = 0.88, at
which the Majorana-like bound state is fixed. In the upper panel
of Figure 2, for the degenerate spectral flow of corner states
(𝜙 = 𝜋), we visualize these 0D states that live at opposite corners,
here shown for different values of 𝛿R. For these particular
geometrical parameters we depict the uniform triangular lattices
in the background from which the rhombi are cropped out. The
vortex core is thus understood as an collective formation of cor-
ner states C− (C+) that wind in a clockwise (counter-clockwise)
manner with n = −1 (n = 1) through the adiabatic parameter
𝜙(r). Thus the corner states, as seen in the spectral flows, possess
a handedness where the vortex and antivortex come in pairs.
Interestingly, one could consider the Kekulé winding parameter
𝜙 as the third coordinate via a dimensional extension. To this
end, the spectral flow maps exactly into the gapless dispersion

relation of chiral hinge states in C2zT invariant 3D topological
crystalline insulators.[36,37] In other words, one-way polarized
confined states along the hinges of HOTIs find their counterpart
in our Kekulé texture that adiabatically pumps the C± states
across the bulk and the bandgap with respect to their chiralities.
To additionally provide evidence that the Jackiw–Rossi vortex

constitutes a topological pumping process, we discuss how an
incomplete 2𝜋 Kekulé phase 𝜙(r) can suffice while it still main-
tains the plenary adiabatic modulation. To address this effect, two
groups of simulations are performed for vortices of fractional
winding numbers (see Figure 3a) and containingN uniform par-
titions (see Figure 3b). Except for 𝜙(r), all parameters remain as
in Figure 1. The fractional vortices in Figure 3a contain a contin-
uous but incomplete Kekulé phase modulation, which does not
span over the entire 2𝜋 range. For the fractional vortices, the re-
sponse spectra depicted in Figure 3a clearly reveal their connec-
tion to the winding number n. By gradually breaking the integer
winding number into fractions, we see that the bound state atΩD
gradually shrinks down to the critical point at n = 1∕2, beyond
which the state ceases to exist. To unravel the significance of this
threshold, we must return to the former study that exemplified
how topological pumping depicts an evolution process of corner
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Figure 3. Modulation of the angular Kekulé pumping parameter 𝜙(r). a)
Computed pressure spectra |P(Ω)|within the topological bandgap for vor-
tices of fractional winding n. The division of the 2𝜋 Kekulé cycle of the
spectral flows is indicated by the shaded pink background. b) Same as
before, now the vortex is segmented by N uniform partitions of equal
Kekulé phase increments for n = 1, as illustrated by the pie charts. An addi-
tional spectrum is computed comprising cylinder-radii perturbations with
𝛿R = 0 within a defect zone of radius RD = 3d.

states ruled by the spectral flow. These states that confine within
the bounds of the Kekulé phase 𝜋∕2 ≤ |𝜙(r)| ≤ 𝜋, which are de-
picted in Figure 3a, must self-similarly reside within a nontrivial
phase-zone (pink backgrund) as controlled by the structuring of
n. Hence, for n < 1∕2 the adiabatic winding does not acquire a
sufficiently large angular phase accumulation to enter the spec-
tral flow of corner states, which strongly corroborates that the
Majorana-like state originates from a topological pumping pro-
cess. Next, as shown in Figure 3b, we conduct an additional study
where the angular variation of𝜙(r) is segmented intoN (= 3, 4, 6)
uniform partitions of equal phase intervals 2𝜋∕N. Instead of frac-
tioning the winding as we did in the former case, the present
analysis constitutes a nonsmooth winding (n = 1) with respect to
the said rough segmentations. Intuitively, one would expect poor
binding of topological vortices of few segments, but not only do
we predict the usual bound state atΩD down toN = 3, it is further
seen in Figure 3b that symmetry-preserving defects have close to
no influence on the topologically protected pressure peak |P(Ω)|.
Conclusively, apart from multiple additional features appearing
in the spectrumwhen defects are added (Figure 3b), once more it
is confirmed that the Majorana-like states originate from a rather
versatile winding implementation.
The adiabatic evolution of the spectrally flowing corner states

as we discussed earlier, projects the otherwise time-reversal sym-
metrical angular Kekulé texture 𝜙(r) along the third coordinate
of HOTIs. Put differently, the handedness of our man-made
Jackiw–Rossi vortices finds it imminent counterpart in topologi-
cally protected one-way hinge states flowing along the kz axis in
momentum space. To shed more light on this similarity, we dis-
tinctively engineer some vortices to enable the synthetic dimen-
sional extension in question. As rendered in Figure 4a we coa-
lesce two semi-clusters with each having a full 2𝜋 winding. If a

Figure 4. Chiral engineering: we coalesce two semi-clusters each hosting
a vortex of particular handedness. Specifically, we combine two vortices of
right-handed (n = 2 = 1 + 1) and left-handed (n = −2 = −1 − 1) chirality.
In addition, we construct a cluster constituting a combined vortex and
antivortex. a) Plots depict the corresponding pressure spectra |P(Ω)|. As
indicated by the arrows in the insets, the symbols “−” and “+” label, re-
spectively, a clockwise and counter-clockwise 2𝜋 phase winding in the cor-
responding semi-clusters. b) The spatial pressuremaps of the two clusters
of opposite vortex handedness display a spatial separation of the bound
states in the form of opposing heart-shaped hotspots, when excited atΩD.

vortex and an antivortex are combined, they cancel each other out
as seen in the lower panel of this figure and a bound state can-
not be formed. From the chiral pumping process discussed in
Figure 2, the spectral flows of two non-propagating corner states
were characterized by their respective vortex handedness. In or-
der to probe them individually via the Majorana-like state, we
now consider a collective Kekulé winding among the two semi-
clusters, that is, n = 2 or n = −2, which in turn display identical
pressure spectra as computed in Figure 4a. Interestingly, we find
that our man-made vortices bear a striking resemblance to the
edge states of a 2D Chern insulator where counterflowing chi-
ral edge states are separated into opposing “lanes,” in that heart-
shaped sonic hotspots are formed that orient with respect to the
chirality of the Kekulé winding as seen in Figure 4b.
In this article, we have gathered sonic 0D corner states and

Majorana-like bound states within the same framework of a topo-
logical pump. By imposing a so-called Kekulé texture to artifi-
cial sonic lattices to craft a topological Jackiw–Rossi vortex, we
unravel its binding mechanism of a bound state through spec-
trally flowing corner states. The chiral nature of the topological
pumping process has been further enlightened by incorporating
fractional and segmented winding and by arguing how spatially
distinct acoustic hotspots are formed, akin to the unidirectional
characteristics of a 2D quantum-Hall insulator.
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