
International Journal of Solids and Structures 69–70 (2015) 383–391
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Manipulation of the propagation of out-of-plane shear waves
http://dx.doi.org/10.1016/j.ijsolstr.2015.05.012
0020-7683/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 451 86412549; fax: +86 451 86415647.
E-mail address: wlz@hit.edu.cn (L. Wu).

1 Tel.: +86 451 86412549; fax: +86 451 86415647.
Linzhi Wu ⇑, Penglin Gao 1

Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 October 2014
Received in revised form 4 May 2015
Available online 19 May 2015

Keywords:
Cylindrical cloak
Ray trajectory
Out-of-plane shear wave
Hamiltonian
For a given elastic medium, there is a one-to-one correspondence relation between material properties
(elastic moduli and density) and the propagation path of elastic waves. Based on this idea, we propose
a new method for designing a cylindrical cloak invisible to out-of-plane shear waves. We begin by writing
the Hamiltonian governing the path trajectory of out-of-plane shear waves in an inhomogeneous ortho-
tropic medium. Based on Hamilton’s equations of motion, we derive the ray equation for out-of-plane
shear waves and the differential equation that describes the optimal spatial distribution of material prop-
erties in the cylindrical cloak. To solve these two differential equations, two boundary conditions are
imposed in terms of the continuity conditions of displacement and traction on the outer boundary of
the cylindrical cloak. The two differential equations and two boundary conditions constitute a solvable
system from which various cloak profiles can be designed. The proposed approach, which differs from
the transformation optics approach, provides an intuitive and flexible design platform and allows consid-
erable freedom to construct invisibility cloaks with a specific spatial distribution of material properties.
The effects of the material properties and boundary conditions on cloak invisibility are analyzed in detail.
Numerical simulations show that optimized cylindrical cloaks with finite material properties can be
easily constructed.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Pendry et al. (2006) and Leonhardt (2006) independently
showed that it is possible to control the paths of electromagnetic
waves by changing the spatial distribution of material’s properties
in the cloak as if nothing is there. Since then, there has been con-
siderable interest in cloaking, and many studies have been devoted
to the concept, as recently reviewed by Chen et al. (2010) and
Guenneau et al. (2011). To experimentally verify cloak invisibility,
a cylindrical cloak was constructed with the use of artificially
micro-structured metamaterials and designed to be used at both
microwave (Schurig et al., 2006) and optical frequencies (Cai
et al., 2007). The concept of cloaking by transformation optics
arose from earlier work by Greenleaf et al. (2003a,b), in which
push-forward mapping was used to design areas of anisotropic
conductivity to make a region undetectable.

Transformation optics has evolved into a powerful tool for the
design of invisibility cloaks for electromagnetic waves, acoustic
waves, thermal conductivity and electric conductivity. Cummer
and Schurig (2007) confirmed the existence of
transformation-type solutions for 2D acoustic equations with ani-
sotropic mass and analyzed why the special equivalence of acous-
tics and electromagnetics occurs only in 2D. A theory of acoustic
cloaking was developed using the transformation method for map-
ping the cloaked region to a point with vanishing scattering
strength; the result obtained was that perfect cloaking can be
achieved with finite mass through the use of anisotropic stiffness
(Norris, 2008). Zhang et al. (2011) presented the practical realiza-
tion of a low-loss and broadband acoustic cloak for underwater
ultrasound in which the metamaterial cloak is constructed with a
network of acoustic circuit elements.

Milton et al. (2006) showed that the equations of motion for a
general elastic medium are not invariant under coordinate trans-
formations and that if cloaking exists for such classes of waves, it
is of a different nature from its electromagnetic and acoustic coun-
terparts. Norris and Shuvalov (2011) generalized the work of
Milton et al. (2006), and derived the material properties of the
transformed system that depend on the choice of gauge. Colquitt
et al. (2014) developed a formal framework for transformation
elastodynamics as applied to Kirchhoff–Love plates. It has been
demonstrated that the bi-harmonic equation governing the flexu-
ral deformation of a linear homogeneous and isotropic Kirchhoff–
Love plate is not invariant under general coordinate mapping.
Thus, invisibility cloaks can only be designed for certain elastic
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Fig. 1. Path trajectory of an out-of-plane shear wave in the cylindrical cloak. (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)

Fig. 2. The black dot at the top left corner denotes a point source, the grey marked
area S1 indicates the integration domain, the red marked area represents an
inclusion or a void, and the red rays denote the path trajectories of out-of plane
shear waves. (For interpretation of the references to colour in this figure caption,
the reader is referred to the web version of this article.)
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waves (i.e., antiplane elastic waves) by transformation optics. The
extension of the cloaking mechanism to the domain of flexural
waves propagating in thin infinite elastic plates has been
addressed by adopting a coordinate transformation (Farhat et al.,
2009). Brun et al. (2009) proposed a cylindrical cloak designed
for fully coupled shear and pressure waves. Following the coordi-
nate transformation, the elastic properties of the cylindrical cloak
were derived and its density and elastic moduli with the
non-symmetric constitutive tensor were determined. Using the
framework of transformation optics, Colquitt et al. (2013) pre-
sented a detailed analysis of a physically realizable square cloak
for acoustic, out-of-plane shear elastic and electromagnetic waves.
Brun et al. (2014) developed a model of a broadband invisibility
cloak for channeling flexural waves in thin plates around finite
inclusions. Diatta and Guenneau (2014) have investigated spheri-
cal cloaks for solid elastic waves using a radially symmetric linear
geometric transform. Except for coordinate transformations, the
nonlinear elastic pre-stress of neo-Hookean hyperelastic materials
has been used as a mechanism to generate finite cloaks and render
objects near-invisible to incoming antiplane elastic waves (Parnell
et al., 2012). The transformation method in the context of elastic
ray theory for high frequency elastic waves has also been exam-
ined (Chang et al., 2012). Parnell and Shearer (2013) considered a
cloak construction based on the approach of Torrent and
Sanchez-Dehesa (2008) and addressed the deviation of the mate-
rial from neo-Hookean behavior by adopting the arguably more
realistic Mooney–Rivlin model. Recently, Schittny et al. (2013)
have fabricated macroscopic polymer-based samples with differ-
ent combinations of small-connection diameter and lattice con-
stant by using three-dimensional printing; they also measured
the effective shear and Young’s moduli for this type of pentamode
metamaterial.

In this paper, our motivation is to propose a new method for
determining appropriate material parameters for the cloak by the
pre-designed ray trajectory of out-of-plane shear waves. The paper
is structured as follows. To design the cloak profile and verify its
cloaking performance, we derive the corresponding differential
equations and boundary conditions in Section 2 (note that the
summation convention over repeated lowercase Latin indices is
adopted over the range 1–3). The Hamiltonian for an
out-of-plane shear wave is written to describe a propagation path
through an inhomogeneous anisotropic medium in Section 2.1. We
then derive the ray equation of out-of-plane shear waves through
Hamilton’s first equation of motion in Section 2.2. The differential
equation that governs the spatial distribution of material proper-
ties is derived through Hamilton’s second equation of motion in
Section 2.3. The boundary conditions for the differential equations
are given by the interface conditions between the cylindrical cloak
and the surrounding medium in Section 2.4. The differential equa-
tions are solved and two cloak profiles are used to simulate cloak-
ing performance numerically in Section 2.5. To analyze the
scattering of a cylindrical cloak, we employ the scattering measure
introduced by Colquitt et al. (2013). In Section 3, two simpler cloak
profiles are considered and numerical simulations are provided to
demonstrate cloak invisibility. To verify the efficiency of the pro-
posed method, numerical simulations are presented in
Section 3.1. In Section 3.2, the effect of boundary conditions
(Dirichlet, Neumann and Robin BCs) on cloaking performance is
discussed in detail. The effect of soft and hard inclusions on the
efficiency of the cloak is examined in Section 3.3. Finally, conclu-
sions from the current study are summarized in Section 4.
2. Design of the cylindrical cloak

Fig. 1 illustrates an inhomogeneous and anisotropic cylindrical
cloak X with inner radius a and outer radius b. In cylindrical coor-
dinates, the cloak is orthotropic and its elastic moduli are repre-
sented by nine independent components of the stiffness tensor:
crrrrðrÞ, chhhhðrÞ, czzzzðrÞ, crrhhðrÞ ¼ chhrrðrÞ, chhzzðrÞ ¼ czzhhðrÞ,
czzrrðrÞ ¼ crrzzðrÞ, crhrhðrÞ, chzhzðrÞ and czrzrðrÞ. Without loss of general-
ity, a time-harmonic out-of-plane shear wave with unit amplitude
w0 ¼ eiðk0x1�xtÞ is assumed to be vertically incident on the cylindri-
cal cloak, where k0 ¼ x=c is the wave number in the homogeneous
medium X0 outside the cloak, x is the circular frequency, and c is
the speed of the wave in X0. As shown in Fig. 1, symmetric with
respect to the x1-axis allows us to consider only the propagation
of the out-of-plane shear wave in the upper half plane satisfying
x2 P 0.

2.1. Hamiltonian and equations of motion

The ray method is often used to study high-frequency wave
propagation in inhomogeneous anisotropic media. Let us consider



Fig. 3. Snapshots of displacement amplitude field at x ¼ 10: (a) uncloaked; (b) cloak profile-1; (c) cloak profile-2.

Fig. 4. Variations of scattering measures with non-dimensional angular frequency
x. The green, red and black dashed lines correspond to scattering measures ee , ec

and eu , respectively. (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.)
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the time-harmonic solution, in which the displacement amplitude
field is expanded into a series of inverse powers of frequency x.
Inserting these into the elastodynamic equation yields a polyno-
mial in x consisting of three terms. The first term, with the highest
power of x, immediately yields the eikonal equation (Cerveny,
2001). Along the path trajectory of out-of-plane shear waves, the
eikonal equations can be written, respectively, as

ci3j3liljk
2
c ¼ qcx

2 in X ð1Þ

l0k2
0 ¼ q0x

2 in X0 ð2Þ

where cijkl and qc are the stiffness tensor and density of the cylindri-
cal cloak, respectively, kc is the norm of the wave vector kc in X, li

are the components of the unit vector l ¼ kc=kc , and l0 and q0 are
the shear modulus and density of the homogeneous medium in
X0, respectively. The Hamiltonian governing the path trajectory is
essentially the eikonal equation of the out-of-plane shear wave
and may be multiplied by an arbitrarily continuous function of spa-
tial coordinates without changing the paths derived from the equa-
tions of motion. Eliminating the parameter x from Eqs. (1) and (2),
the Hamiltonian (equivalently, the characteristic equation for the
ray) can be expressed as

H ¼ 1
2
½k2 � n2ðl; rÞ� ð3Þ

where k ¼ kc=k0 is the norm of the vector k ¼ kc=k0 and n depends
on the Cartesian coordinate r ¼ ðx1; x2; 0Þ and the unit vector l and
can be expressed as
n2 ¼ q
cijlilj

ð4Þ

where q ¼ qc=q0 and cij ¼ ci3j3=l0. Because the propagation path of
the out-of-plane shear wave is perpendicular to the x3-axis, we have
l3 ¼ 0. Thus, Eq. (4) is related to the non-dimensional parameters
c11, c22 and c12 ¼ c21 only.

The path equations in an inhomogeneous anisotropic medium
have the form (Cerveny, 2001)

dx
ds ¼

@H
@k
¼ k� 1

2
@n2

@k
¼ sðk;xÞ ð5Þ

dk
ds
¼ � @H

@x
¼ 1

2
@n2

@x
ð6Þ

where s denotes the ray vector and s parameterizes the path. The
parameter s is related to the arc length jdxj by jdxj ¼ jsjds where
jsj is the norm of the vector s. For the inhomogeneous anisotropic
medium, s does not coincide with the direction of the normal k to
the phase front.

For the Hamilton’s equation of motion shown in Eq. (5), we have
the following relation (Kravtsov and Orlov, 1990):

si ¼ ki �
@n
@lj
ðdij � liljÞ ð7Þ

where dij is the Kronecker delta. Differentiating n2 in Eq. (4) with
respect to lj and using Eq. (3), we obtain the relation

k ¼ n ¼ � @n
@lj

lj ð8Þ

In the derivation of Eq. (8), we use the fact that the Hamiltonian
is equal to zero along the path trajectory. Substituting Eq. (8) and
the relation ki ¼ kli into Eq. (7) yields

si ¼ �
@n
@li
¼ cijkj

cpqlplq
ð9Þ
2.2. Path equation of out-of-plane shear waves

Through the coordinate transformation, we have

cijkl ¼ Jii0 Jjj0 Jkk0 Jll0ci0 j0k0 l0=detðJmm0 Þ with Jmm0 ¼
@ðx1; x2; x3Þ
@ðr; h; zÞ ð10Þ

which represents the derivative of the Cartesian coordinates with
respect to the cylindrical coordinates. Eq. (10) gives the transforma-
tion relation between the fourth-order tensor in Cartesian coordi-
nates ðx1; x2; x3Þ and the one in cylindrical coordinates ðr; h; zÞ.
Substituting cr ¼ crzrz=l0, ch ¼ chzhz=l0 and cz ¼ czzzz=l0 in cylindrical
coordinates into Eq. (10), we obtain



Fig. 5. Snapshots of displacement amplitude field for different cloak profiles and boundary conditions. (a) uncloaked, Dirichlet BC; (b) uncloaked, Neumann BC; (c) uncloaked,
Robin BC; (d) CP1, Dirichlet BC; (e) CP1, Neumann BC; (f) CP1, Robin BC; (g) CP2, Dirichlet BC; (h) CP2, Neumann BC; (i) CP2, Robin BC. The color scale is the same as in Fig. 3.

Fig. 6. Variations of scattering measures with x for different cloak profiles and boundary conditions. (a) uncloaked; (b) cloaked with CP1 and CP2.
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Table 1
Variations of scattering measures corresponding to CP1 and CP2 with g under three
types of boundary conditions.

ec CP1 CP2

g ¼ 3 g ¼ 4 g ¼ 5

Dirichlet BC 8:253� 10�3 1:599� 10�3 1:078� 10�3 1:179� 10�3

Neumann BC 4:263� 10�5 1:328� 10�3 0:898� 10�3 1:089� 10�3

Robin BC 7:079� 10�3 1:598� 10�3 1:077� 10�3 1:179� 10�3

Fig. 7. Snapshots of displacement amplitude field with soft and hard inclusions. (a) soft inclusion, uncloaked; (b) soft inclusion, CP1; (c) soft inclusion, CP2; (d) hard inclusion,
uncloaked; (e) hard inclusion, CP1; (f) hard inclusion, CP2. The color scale is the same as in Fig. 3.
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c11 ¼ crcos2hþ chsin2h; c22 ¼ crsin2hþ chcos2h; c33 ¼ cz

c12 ¼ c21 ¼ ðcr � chÞsinhcosh; c13 ¼ c31 ¼ 0; c23 ¼ c32 ¼ 0
ð11Þ

Following the partial derivative of the composite function, the
following relations relate the Cartesian coordinates ðx1; x2; x3Þ to
the cylindrical coordinates ðr; h; zÞ:

dr
ds
¼ dx1

ds
cos hþ dx2

ds
sin h ð12Þ

rdh
ds
¼ � dx1

ds
sin hþ dx2

ds
cos h ð13Þ

Dividing Eq. (12) by Eq. (13) and according to Eqs. (5) and (9), we
obtain

dr
rdh
¼ � cr

ch

k1 cos hþ k2 sin h
k1 sin h� k2cosh

ð14Þ

Eq. (14) describes the path trajectory of an out-of-plane shear wave
that is vertically incident on the cylindrical cloak.
Because the Hamiltonian is equal to zero along the path trajec-
tory, we have, by substituting Eqs. (4) and (11) into Eq. (3)

crðk1 cos hþ k2 sin hÞ2 þ chðk1 sin h� k2coshÞ2 ¼ q ð15Þ

From Eqs. (14) and (15), we obtain

k1 sin h� k2cosh ¼ �
ffiffiffiffiffiffiffiffiffiffi
q=ch

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch
cr

dr
rdh

� �2 þ 1
q ð16Þ

k1 cos hþ k2 sin h ¼ �
ffiffiffiffiffiffiffiffiffiffi
q=cr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch
cr

dr
rdh

� �2 þ 1
q ffiffiffiffiffi

ch

cr

r
dr
rdh

ð17Þ

As shown in Fig. 1, the out-of-plane shear wave propagates
from left to right. Because k ¼ ðk1; k2Þ corresponds to the direction
of the normal vector to the phase front and ðsin h;� cos hÞ denotes
the unit azimuthal vector along the clockwise direction, the angle
between these two vectors is an acute angle. As a result, the right
side of Eq. (16) takes a positive sign. From Eqs. (14) and (16), it is
easily observed that the right side of Eq. (17) takes a negative sign.
Crudo and O’Brien (2009) took the following ray equation for cal-
culating the dielectric tensor:

r ¼ aþ ðb� aÞ sin h0

sin h
ð18Þ

where h0 is the incident angle of the out-of-plane shear wave as
shown in Fig. 1 and sin h0= sin h 6 1 when h 2 ½p� h0; h0�. We take
this equation as a reference to derive the differential equation of
the path trajectory. To obtain a path trajectory equation similar to
Eq. (18), we assume using the terms of Eq. (14) that

k1 sin h� k2cosh ¼ f 1ðrÞ sin h ð19Þ



Table 2
Energies flowing into soft and hard inclusions for CP1 and CP2.

x E (CP1) E (CP2)

Soft Hard Soft Hard

5 8:157� 10�7 2:054� 10�8 1:835� 10�8 7:783� 10�10

10 6:843� 10�5 4:624� 10�7 1:844� 10�7 2:738� 10�9

15 3:657� 10�10 2:524� 10�6 6:767� 10�10 5:451� 10�7

Fig. 8. Variations of the index Q with x when soft and hard inclusions are present
in the cylindrical cloak.
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k1 cos hþ k2 sin h ¼ f 2ðrÞ cos h ð20Þ

where f 1ðrÞ and f 2ðrÞ are undetermined functions of variable r. From
Eqs. (14), (19) and (20), it is found that when f 1ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffi
q=ch

p
and

f 2ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
q=cr

p
, we obtain the following relation:ffiffiffiffiffi

ch

cr

r
dr
rdh
¼ � cos h

sin h
ð21Þ
2.3. Differential equation of material properties

To derive the differential equation related to the material prop-
erties of the cylindrical cloak, we need to use Hamilton’s second
equation of motion. In cylindrical coordinates, we have

dk
ds
¼ dðkrer þ khehÞ

ds
ð22Þ

where er and eh are the unit vectors along the radial and azimuthal
directions, respectively. Following Auld (1973), we have

der

ds
¼ @er

@r
sr þ

@er

r@h
sh ð23Þ

deh

ds
¼ @eh

@r
sr þ

@eh

r@h
sh ð24Þ

and

@er

@r
¼ @eh

@r
¼ 0;

@er

r@h
¼ 1

r
eh;

@eh

r@h
¼ �1

r
er ð25Þ

Substituting Eqs. (23)–(25) into Eq. (22) and comparing it with
Eq. (6), we obtain

dkr

ds
¼ 1

2
@n2

@r
þ khsh

r
ð26Þ

dkh

ds
¼ 1

2
@n2

r@h
� krsh

r
ð27Þ
We can use one of these two expressions to derive the differen-
tial equation governing the desired spatial distribution of material
properties. We select Eq. (27) to derive the corresponding differen-
tial equation. For this purpose, we need to express the differential
ds in terms of the differential dh of the azimuthal angle. Following
Kravtsov and Orlov (1990), ds can be expressed as

ds ¼ jdxj
jsj ¼ �

1
jsj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr
dh

� �2

þ r2

s
dh ð28Þ

The negative sign appears in Eq. (28) because the parameter s
decreases with increasing h. Substituting Eq. (21) into Eq. (28)
and applying Eqs. (9), (19) and (20), we obtain

ds ¼ � cijliljffiffiffiffiffiffiffiffiqch
p

sinh
rdh ð29Þ

According to the coordinate transformation between the
Cartesian coordinates and the cylindrical coordinates, we have
from Eqs. (19) and (20)

kr ¼ k1 cos hþ k2 sin h ¼
ffiffiffiffiffiffiffiffiffiffi
q=cr

p
cos h ð30Þ

kh ¼ �k1 sin hþ k2cos h ¼ �
ffiffiffiffiffiffiffiffiffiffi
q=ch

p
sin h ð31Þ

and

sh ¼ �s1 sin hþ s2cosh ð32Þ

Substituting Eqs. (9) and (11) into Eq. (32) and applying Eqs. (30)
and (31), we have

sh ¼ �
ffiffiffiffiffiffiffiffiqch
p

cijlilj
sin h ð33Þ

Differentiating n2 in Eq. (4) with respect to h and using Eq. (4),
we obtain

@n2

r@h
¼ � 1

cijlilj

@cpq

r@h
kpkq

� �
ð34Þ

Substituting Eqs. (11), (30) and (31) into Eq. (34), we have

@n2

r@h
¼ 2ðcr � chÞq

rcijlilj
ffiffiffiffiffiffiffiffi
crch
p sin h cos h ð35Þ

According to Eq. (21) and substituting Eqs. (29)–(31), (33) and
(35) into Eq. (27), we then obtain

1
q=ch

dðq=chÞ
dr

¼ 2
r

ffiffiffiffiffi
ch

cr

r
� 1

� �
ð36Þ

Eqs. (21) and (36) form a pair of differential equations that gov-
ern the variation of material properties. To obtain expressions for
the desired spatial distribution of material properties in the cylin-
drical cloak X, we need to give the corresponding boundary condi-
tions for these two differential equations.

2.4. Interface conditions

To obtain the initial conditions for an out-of-plane shear wave
entering the cylindrical cloak, we need to express the continuity
conditions of displacement and traction at the interface r ¼ b.
These can be written as

w ¼ w0; cij3l
@w
@xl

mj ¼
0 i–3
il0k0m1 i ¼ 3

�
ð37Þ

where m ¼ ðcos h0; sin h0; 0Þ is the unit normal to the outer surface
of the cylindrical cloak. Without loss of generality, the
time-harmonic out-of-plane shear wave in the cylindrical cloak
can be assumed to be w ¼ eiðkc �x�xtÞ. Here, the interface between
the background material and the cylindrical cloak is assumed to
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be perfectly bonded. For this purpose, the continuity condition of
displacement on the interface r ¼ b must be satisfied. Thus, we have
the relation kc � x ¼ k0 � x on the interface r ¼ b, where k0 ¼ ðk0;0Þ
and x ¼ ðb cos h0; b sin h0Þ. From this relation, it is easily derived that
the tangential components of vectors kc and k0 along the interface
r ¼ b are identical. From Eq. (19), we have the relation
qðbÞ=chðbÞ ¼ 1. Because w is a function of variables x1 and x2 and
because m3 ¼ 0, the left term in the second expression of Eq. (37)
is equal to zero in terms of Eq. (10) when i–3. When i ¼ 3, we have

crðk1 cos h0 þ k2 sin h0Þ ¼ cos h0 ð38Þ

Obviously, when
ffiffiffiffiffiffiffiffiffiffiffi
ch=cr

p
¼ r=ðr � aÞ, the path trajectory equa-

tion of the out-of-plane shear wave will degenerate into Eq. (18)
when the two sides of Eq. (21) are integrated from ðb; h0Þ to ðr; hÞ.
To extend existing work, however, we consider the more general
case of

ffiffiffiffiffiffiffiffiffiffiffi
ch=cr

p
¼ gr=ðr � aÞ where g is a positive parameter.

Letting r ¼ b and h ¼ h0 in Eq. (20) and according to Eq. (38), we
have qðbÞcrðbÞ ¼ 1. Thus, the boundary conditions for Eqs. (21)
and (36) can be expressed as

qðbÞ
chðbÞ

¼ 1; qðbÞcrðbÞ ¼ 1 ð39Þ
2.5. Cylindrical cloak profiles

For the current problem, we have the relation

ch

cr
¼ g2r2

ðr � aÞ2
ð40Þ

Substituting Eq. (40) into Eq. (21), we obtain the following path
trajectory equation:

r ¼ aþ ðb� aÞ sin h0

sin h

� �1=g

ð41Þ

This is the path trajectory equation for the cylindrical cloak. It is
easily observed that a singularity for the on-axis ray ðh0 ¼ pÞ
would arise if it were to traverse the cylindrical cloak (Crudo and
O’Brien, 2009). When g ¼ 1, Eq. (41) is consistent with the path
trajectory equation (18). When g–1, however, Eq. (41) differs from
Eq. (18). When g increases, the path trajectory of the out-of-plane
shear wave bulges outward. Thus, we can obtain from Eqs. (36),
(39) and (40)

q
ch
¼ b2

ðb� aÞ2g
ðr � aÞ2g

r2 ð42Þ

Eqs. (40) and (42) provide two simple relations that are used to
determine the three material parameters cr , ch and q. There are
many different choices for designing the cylindrical cloak. This
flexibility implies that the proposed method can provide different
cloak profiles by incorporating multiple simple expressions that
satisfy Eqs. (39), (40) and (42). In addition to the shear modulus
and density of the cylindrical cloak, the parameter g introduced
in the current paper can also be adjusted. Therefore, we have
enlarged the design space of the cloak for the case of
out-of-plane shear waves, so that it is beneficial for us to make
the trade-off between the complexity of material parameters and
the cloaking performance. Below, we will consider two specific
cloak profiles.

When g ¼ 1, we take a set of material parameters as follows:

cr ¼
r � a

r
; ch ¼

r
r � a

; q ¼ b
b� a

� �2 r � a
r

ð43Þ

which satisfy Eqs. (39), (40) and (42). According to the form invari-
ance of the governing equation of out-of-plane shear waves under
the coordinate transformation, Parnell and Shearer (2013) also
derived material parameters of the cylindrical cloak as shown in
Eq. (43). The governing equation of out-of-plane shear waves, which
has the same form to that of acoustic waves, is the Helmholtz equa-
tion. In this sense, the first application of Eq. (43) was in the work of
Cummer and Schurig (2007) on acoustic waves.

As the classical approach to cloaking via coordinate transfor-
mation involves deforming a region such that a point is mapped
to a finite region corresponding to the inner boundary of the
cloak, the material parameters given by Parnell and Shearer
(2013) inevitably exhibit a singularity on the inner boundary of
the cloak. However, the current paper provides an effective way
to design cloak profiles with finite material properties. For exam-
ple, letting ch equal a constant, we obtain the set of finite material
parameters

cr ¼
b

gðb� aÞ
r � a

r

� 	2
; ch ¼

gb
b� a

; q ¼ gb3

ðb� aÞ2gþ1

ðr � aÞ2g

r2

ð44Þ

From Eq. (44), it can be observed that the material property sin-
gularity in ch is eliminated, but that singularities still exist for cr

and q at the inner boundary of the cylindrical cloak. For conve-
nience, we denote the cloaks shown in Eqs. (43) and (44) as cloak
profile-1 (CP1) and cloak profile-2 (CP2), respectively.
2.6. Scattering measure of out-of-plane shear waves

Visual observation, though it provides insight in many circum-
stances, is still a subjective measure. In a microwave field, radar
cross section (RCS) is an effective way to measure far-field
scattering. Likewise, we hope to define a quantitative index to
objectively measure elastic wave scattering. Obviously, there exist
no uniform criteria to define such an index. This paper will adopt
the ‘scattering measure’ defined by Colquitt et al. (2013) to
analyze cloak performance quantitatively for a problem described
by the same equation of motion. The scattering measure is
defined as

eðw1;w2; S1Þ ¼
Z

S1

jw1ðxÞ �w2ðxÞj2dS1

� � Z
S1

jw2ðxÞj2dS1

� ��1

ð45Þ

where w1ðxÞ and w2ðxÞ are any two fields and S1 is the integral
domain outside the cloak. Generally, the scatterer will cause a
heavy shadow on its back area. Therefore, we can take the lower
right corner area of the cylindrical cloak, relative to the incident
direction of the point source, as the integral domain of the
scattering measure; this is the grey domain shown in Fig. 2.
Three displacement fields are used in the following simulation.
They are the undisturbed background field wb, the cloaked
field wc and the uncloaked field wu. The undisturbed field
excited by a unit point source can be analytically expressed as

wbðxÞ ¼ iHð1Þ0 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0=l0

p
jx� x0j

� �
=4 by the Green function, where

Hð1Þ0 is the zero-order Hankel function of the first kind. The quanti-
ties ecðwc;wb; S1Þ and euðwu;wb; S1Þ are defined as the quantitative
measure of near-field scattering with and without the cloak, respec-
tively. Thus, the perfect cloak corresponds to vanishing ec . The
quantity eeð~wb;wb; S1Þ is defined as the quantitative measure of
numerical errors, where ~wb denotes the undisturbed background
field given by the finite element method. Another index,
Q ¼ j1� ecðwc;wb; S1Þ=euðwu;wb; S1Þj, is used to evaluate the relative
scattering reduction by introducing a cloak and was proposed by
Colquitt et al. (2013).
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3. Results and discussion

In Section 2, we considered the vertical incidence of
out-of-plane shear waves on the cylindrical cloak, which is parallel
to the x1-axis, and derived the equations related to material prop-
erty distribution within the cylindrical cloak. From Eqs. (40) and
(42), it is easily observed that the shear modulus and density of
the cylindrical cloak are functions of the variable r only. Thus,
the cylindrical cloak with material parameters governed by Eqs.
(39), (40) and (42) is axially symmetric. This symmetry implies
that the behavior of such a cylindrical cloak is independent of
the incident direction of out-of-plane shear waves. In other words,
if an out-of-plane shear wave with horizontal incidence can be per-
fectly cloaked, then out-of-plane shear waves from other directions
in the plane o� x1x2 can also be perfectly cloaked. All simulations
in the current paper are implemented in the PDE module of the
finite element software COMSOL Multiphysics with the simulation
model shown in Fig. 2.

The cylindrical cloak is located at the center of the simulation
domain, and the point source is applied at (�1.5 m, 1.5 m).
Perfectly matched layers are applied on the boundary of the simu-
lation domain to simulate an infinite domain. To facilitate compu-
tation, the non-dimensional background material properties are
taken as l0 ¼ q0 ¼ 1, and other parameters are taken as g ¼ 3,
a ¼ 0:3m, b ¼ 0:6m. Because a perfect scatterer would cause the
maximum disturbance to the background field, it is often chosen
to validate the cloak invisibility; for example, one uses a perfect
electric conductor for electromagnetic waves, a rigid immovable
solid for acoustic waves and a heat insulator for thermal diffusion.
For this purpose, the non-dimensional material properties inside
the cylindrical cloak are taken as li !1 and qi !1. Only the
case of g P 1 needs to be considered in the following simulations
because the cloaking performance of the cylindrical cloak for
out-of-plane shear waves deteriorates when g < 1 .
3.1. Validity of the proposed method

Fig. 3(a–c) show displacement amplitude snapshots of
out-of-plane shear waves for three cases: (a) uncloaked; (b) cloak
profile-1; (c) cloak profile-2, respectively. It can be observed that
both CP1 and CP2 exhibit good cloak invisibility when the
non-dimensional angular frequency x ¼ 10. To depict cloak invis-
ibility quantitatively, we need to calculate the scattering induced
by the cylindrical cloak with inclusions. Fig. 4 illustrates the varia-
tion of the scattering measure with x. The dashed lines with black,
red and green colors correspond to scattering amounts eu, ec and ee,
respectively. The non-vanishing ee reflects the numerical errors
caused by numerical discretization. It can be observed that ee

increases slightly with increasing non-dimensional angular fre-
quency. This increase is caused by the relatively coarser mesh com-
pared with the wavelength. (We use the same mesh for different
wavelengths in the finite element calculations.) The near-overlap
of the two curves corresponding to ee and ec demonstrates the util-
ity of cloak profile-2.
3.2. Effect of boundary conditions (BC)

The perfect scatterer is often chosen to validate cloak invisibil-
ity, but it is also necessary to consider the effect of boundary con-
ditions on the scattering measure. Recently, Jones et al. (2015)
analyzed the influence of boundary conditions on the interior sur-
face of the cloaking layer in detail, based on the explicit analytical
solutions of a wave propagation problem for a membrane as well
as a Kirchhoff flexural plate. In fact, the discussion of boundary
conditions illuminates the similarities and differences between
cloak profile-1 and cloak profile-2. The current paper considers
three types of boundary conditions: rigid boundary, free boundary
and impedance boundary. They correspond to the Dirichlet,
Neumann and Robin BCs in partial differential equations, respec-
tively. For Robin-type boundary conditions, the ratio of interface
impedance b ¼ 1=

ffiffiffi
6
p

is used in numerical simulations of the dis-
placement amplitude field. Fig. 5(a–i) show displacement ampli-
tude snapshots of out-of-plane shear waves for three types of
cloaks: (a–c) uncloaked; (d–f) CP1; (g–i) CP2 and for three types
of boundary conditions: (a,d,g) Dirichlet BC; (b,e,h) Neumann BC;
(c,f,i) Robin BC. From these figures, it can be observed that both
CP1 and CP2 exhibit good invisibility for all three boundary condi-
tions mentioned above. To compare the effect of three types of
boundary conditions on cloak invisibility, we analyze the corre-
sponding scattering measures quantitatively.

Fig. 6(a and b) illustrate the scattering measures plotted against
the non-dimensional angular frequency x for three types of cloaks
and three types of boundary conditions mentioned above, respec-
tively. From Fig. 6(a), it can be observed that eu increases with
increasing x, particularly for the Neumann and Robin BCs. In addi-
tion, the rigid and free boundaries induce the maximum and min-
imum scattering, respectively, and the scattering caused by the
impedance boundary lies between the two. This finding implies
that scattering decreases with the weakening of boundary con-
straints, which is an intuitive result. Fig. 6(b) demonstrates the dif-
ference between CP1 and CP2 for the three types of boundary
conditions. The scattering of CP2 is not sensitive to a change in
boundary conditions and varies only slightly with increasing x.
When x > 12, the slight increase in ec is caused by the relatively
coarser mesh compared with the wavelength. Unlike CP2, the scat-
tering of CP1 is far more sensitive to a change in boundary condi-
tion. As shown in Fig. 6(b), CP1 provides an improved degree of
invisibility for the free boundary compared to the rigid and impe-
dance boundaries.

The propagation of an out-of-plane shear wave in a cylindrical
cloak can be represented by a similar path equation to Eq. (41)
(red rays shown in Fig. 1). It is easily found that the path trajecto-
ries tend toward the outer boundary of the cylindrical cloak with
increasing g. That is, only a small amount of energy propagates
through the region near the inner boundary of the cylindrical cloak.
Therefore, the inner boundary of the cylindrical cloak decreases the
amount of scattering in the propagation of out-of-plane shear
waves with increasing g. It is not difficult to understand the sensi-
tivity difference of the inner boundaries corresponding to CP1 and
CP2. Table 1 shows the variation of scattering measures with g for
three types of boundary conditions. From Table 1, it can be found
that scattering measures for three types of boundary conditions
tend to the same value with increasing g. This result verifies the
validity of the previous analysis.
3.3. Effect of inclusions

The previous section discussed the effect of boundary condi-
tions on cloak invisibility in detail. The rigid and free boundaries
are two extreme cases in which the elastic wave cannot propagate
across the boundary. However, the impedance boundary lies
between these two extreme cases and for this case the elastic wave
can propagate across the boundary. For electromagnetic waves, we
pay more attention to the disturbed field outside the cloak, as it
corresponds to device stealth in practice. For elastic waves, how-
ever, except for the cloak and its external region, we also focus
on the region inside the cloak because of the potential application
of seismic protection.

Here, we consider two typical cases in which the region inside
the cylindrical cloak is filled with soft and hard inclusions,
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respectively. The non-dimensional material properties of the inclu-
sions are taken as qs

i ¼ 0:5, ls
i ¼ 0:2 (soft inclusions) and qh

i ¼ 2,
lh

i ¼ 3 (hard inclusions). Fig. 7(a–f) illustrate the displacement
amplitude snapshots for the following three cases: (a,d) uncloaked;
(b,e) CP1; (c,f) CP2, when the region inside the cloak is filled with
two types of inclusions: (a–c) soft inclusions; (d–f) hard inclusions.
From Fig. 7(b,c,e,f), it can be observed that CP2 performs well in
both cases, whereas CP1 with soft inclusions exhibits poor perfor-
mance because more energy flows into the inclusions. For narrative

convenience, we introduce a parameter E ¼
R

S2
jwiðxÞj2dS2, where

S2 is the inclusion area inside the cylindrical cloak and wiðxÞ
denotes the displacement field in the inclusion, which can be used
to approximate the energy flowing into the inclusion. Numerical
results in Table 2 show that CP2 can effectively prevent elastic
energy from flowing into the inclusion. The disturbed field outside
the cloak can still be evaluated by Q , as shown in Fig. 8. It can be
observed that the degree of invisibility of the cylindrical cloak
strongly improves with increasing x. In comparison with CP1,
CP2 performs better and cloak invisibility is relatively less affected
by the material properties of inclusions.

4. Conclusions

Based on the ray tracing idea, we present a new method to
design a cylindrical cloak that is effectively invisible to
out-of-plane shear waves. The Hamiltonian of the out-of-plane
shear wave is used to derive differential equations (21) and (36),
which govern the ideal spatial distribution of material properties
within the cylindrical cloak. Based on the boundary conditions
expressed in Eq. (39), the solutions of Eqs. (21) and (36) can be rep-
resented by the two simple expressions (40) and (42). The pro-
posed method can provide different cloak profiles by selecting
from many simple expressions that satisfy Eqs. (39), (40) and
(42), and the design space is thus enlarged for the case of a cylin-
drical cloak exposed to out-of-plane shear waves. These results are
expected to facilitate the design, fabrication and verification of
such cloaks.

To analyze the effects of material properties and boundary con-
ditions on cloak invisibility, we consider three types of boundary
conditions on the inner boundary of the cylindrical cloak, along
with three types of cloaks. Numerical results show that both CP1
and CP2 exhibit good invisibility for the three types of boundary
conditions. The scattering of CP2 is insensitive to changes in the
inner boundary of the cylindrical cloak, and its performance is
superior to that of CP1 as a whole. Numerical results in Table 2
show that CP2 can effectively prevent elastic energy from flowing
into the cloaked object. This result is expected to offer design inspi-
ration in the area of seismic protection.

It should be noted that the proposed approach is based on the
asymptotic high-frequency solution of the elastodynamic equation,
which requires the appropriate material properties of the medium
to not vary greatly over distances on the order of the wavelength.
The validity conditions of the ray method have been discussed by
Cerveny (2001).
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